Optimal design of a linkage-cam mechanism-based redundantly actuated parallel manipulator

Author(s):  
Haiying Wen ◽  
Ming Cong ◽  
Weiliang Xu ◽  
Zhisheng Zhang ◽  
Min Dai
2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Chunshi Feng ◽  
Shuang Cong ◽  
Weiwei Shang

In this paper, the kinematic calibration of a planar two-degree-of-freedom redundantly actuated parallel manipulator is studied without any assumption on parameters. A cost function based on closed-loop constraint equations is first formulated. Using plane geometry theory, we analyze the pose transformations that bring infinite solutions and present a kinematic calibration integrated of closed-loop and open-loop methods. In the integrated method, the closed-loop calibration solves all the solutions that fit the constraint equations, and the open-loop calibration guarantees the uniqueness of the solution. In the experiments, differential evolution is applied to compute the solution set, for its advantages in computing multi-optima. Experimental results show that all the parameters involved are calibrated with high accuracy.


Robotica ◽  
1997 ◽  
Vol 15 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Sylvie Leguay-Durand ◽  
Claude Reboulet

A new kinematic design of a parallel spherical wrist with actuator redundancy is presented. A special feature of this parallel manipulator is the arrangement of co-axial actuators which allows unlimited rotation about any axis inside a cone-shaped workspace. A detailed kinematic analysis has shown that actuator redundancy not only removes singularities but also increases workspace while improving dexterity. The structure optimization has been performed with a global dexterity criterion. Using a conditioning measure, a comparison with a non-redundant structure of the same type was performed and shows that a significant improvement in dexterity has been obtained.


Author(s):  
Zhengsheng Chen ◽  
Minxiu Kong

To obtain excellent comprehensive performances of the planar parallel manipulator for the high-speed application, an integrated optimal design method, which integrated dimensional synthesis, motors/reducers selection, and control parameters tuning, is proposed, and the 3RRR parallel manipulator was taken as the example. The kinematic and dynamic performances of condition number, velocity index, acceleration capability, and low-order frequency are taken into accounts for the dimensional synthesis. Then, to match motors/reducers parameters and keep an economical cost, the constraint equations and the parameters library are built, and the cost is chosen as one of the optimization objectives. Also, to get high tracking accuracy, the dynamic forward plus proportional–derivative control scheme is introduced, and the tracking error is chosen as one of the optimization objectives. Hence, the optimization model including dimensional synthesis, motors/reducers selection and controller parameters tuning is established, which is solved by the genetic algorithm II (NSGA-II). The result shows that comprehensive performances can be effectively promoted through the proposed integrated optimal design, and the prototype was constructed according to the Pareto-optimal front.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Feibo Wang ◽  
Qiaohong Chen ◽  
Qinchuan Li

This paper investigates dimensional optimization of a 2-UPR-RPU parallel manipulator (where U is a universal joint, P a prismatic pair, and R a revolute pair). First, the kinematics and screws of the mechanism are analyzed. Then, three indices developed from motion/force transmission are proposed to evaluate the performance of the 2-UPR-RPU parallel manipulator. Based on the performance atlases obtained, a set of optimal parameters are selected from the optimum region within the parameter design space. Finally, the optimized parameters are determined for practical applications.


Sign in / Sign up

Export Citation Format

Share Document