scholarly journals Effects of intra-vineyard variability and soil heterogeneity on vine performance, dry matter and nutrient partitioning

Author(s):  
Matteo Gatti ◽  
Alessandra Garavani ◽  
Cecilia Squeri ◽  
Irene Diti ◽  
Antea De Monte ◽  
...  

AbstractThree vigor zones, identified in a Barbera vineyard by remote sensing at full canopy, were carefully ground-truthed to determine, over 2 years, the relative weight of soil factors in affecting within-field variability, and to investigate vigor zone influence on dry matter (DM) and nutrient partitioning into different vine organs. Regardless of season, high vigor (HV) achieved stronger vine capacity as total vegetative growth and yield while resulting in markedly less ripened fruits than low vigor (LV) vines. PCA analysis carried out on ten different soil and vine variables clearly separated the three vigor levels and the correlation matrix highlighted that the factors mostly contributing to HV were soil depth, soil K and P concentration, total available water, clay fraction and Nleaf concentration. Conversely, sand fraction was the main marker for LV. When annual DM retrieved in clusters, canes, leaves, and shoot clippings was calculated for each vigor level and expressed as content (i.e. kg/ha) there was a general decreasing trend moving from HV to LV. However, when DM partitioned to each organ was given on a relative basis (i.e. percentage over total) results were similar across vigor levels. Similarly, when nutrients were given as content (e.g. kg or g/ha) out of 120 within-vigor combinations (12 nutrients, 2 seasons, 5 organs), 65 showed a significant difference between HV and LV. Conversely, with data expressed on a concentration basis (i.e. % DM) the number of significant differences between the vigor level means fell to 15. The study strengthens the causal link between soil properties and intra-vineyard spatial variability and clarifies that patterns of dry matter and nutrient partitioning to different vine organs are mildly affected by vine vigor when referred on a relative basis.

2018 ◽  
Vol 3 (3) ◽  
pp. 227
Author(s):  
Kouser M. Malik ◽  
Shahid Y. Naz ◽  
Shahzada M. Mehdi ◽  
Asia Munir ◽  
Ahmad Khan ◽  
...  

Potato (Solanum tuberosum L.) is one of the most important tuber crops produced in Pakistan. Due to its nutritive importance, it ranks as fourth after rice, wheat and maize in the world. However, production of the crop is far below the average due to poor crop stand, soil fertility and water management practices. There is a strong need for improvement in the fair yield of potato through managed production techniques and best soil nutrient combinations. To find out the best combination of fertilizer level of NPK on growth, yield and quality of the potato crop, nine field experiments on potato crop were conducted at Rawalpindi division, Punjab Pakistan for three successive Rabi seasons during 2014-2017. Treatments consisted of four levels of N (244, 300, 356 and 412 Kg N ha-1), P (163, 200, 237 and 275 kg P ha-1) and K (136, 167, 198 and 229 Kg K ha-1) laid out in Randomized Complete Block Design (RCBD) with three replications. Results showed that there was no significant difference of location in terms of yield (T ha-1). However, mean data showed that the fertilizer combinations significantly (<0.05) affected yield and yield components of the potato crop. Among the treatments, NPK level (412, 275 and 229 Kg ha-1) gave maximum (100 tuber m-2), potato yield (3.2 Kg m-2), dry matter (1.3 Kg m-2), while the least number of tuber m-2 (63), potato yield m-2 (2.02 Kg), dry matter yield m-2 (0.9 Kg) were recorded where combination NPK (244, 163and 136 Kg ha-1) were applied. From the results, it can be concluded that farming community can obtain the maximum potato yield by adopting NPK (412, 275, 229) levels of fertilizers


2000 ◽  
Vol 36 (1) ◽  
pp. 1-13 ◽  
Author(s):  
S. T. COLLINSON ◽  
K. P. SIBUGA ◽  
A. J. P. TARIMO ◽  
S. N. AZAM-ALI

Sequential sowings were carried out at Dodoma, Tanzania, to examine the effect of changing climatic parameters on the growth and yield of bambara groundnut (Vigna subterranea). Sowings took place on 4 January, 4 February and 4 March 1994; 4 and 24 January, and 13 February 1995; 4 and 21 January, and 7 February 1996. Rainfall during the crop life cycle varied from 163 to 611 mm, mean photoperiod from 11.82 to 12.09 h d−1 and mean temperature from 22.6 to 24.4 °C. In 1994, the highest pod yields were achieved at the earliest sowing date, with a maximum of 2.87 and 1.42 t ha−1 for the red- and cream-seeded landraces, representing pod harvest indices of 0.56 and 0.34 respectively. A 30-d delay in sowing caused >60% reduction in pod yield, and a further 30-d delay resulted in no pods at all. Similarly, in 1995 successive delays in sowing caused dramatic yield declines, and the maximum yield was much lower, at 0.44 t ha−1. In 1996 there was no significant difference in pod yields between the two early sowing dates for the red-seeded landrace and yields were again lower than in 1994 with a maximum of 1.02 t ha−1. Differences in dry matter production between sowings and years were attributed mainly to differences in the amount and distribution of rainfall and to declining temperatures towards the end of the season; however, partitioning to pods was remarkably consistent across sowings.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
SAMBORLANG K. WANNIANG ◽  
A. K. SINGH

A field experiment was conducted during kharif 2011 on experimental farm of the College of Post Graduate Studies (CAU–Imphal), Umiam (Meghalaya) to evaluate the effect of integration of green manuring, FYM and fertilizers as integrated nutrient management (INM) practices on growth and developmental behaviour of quality protein maize cultivar QPM 1. The data revealed that comparatively higher amount of primary nutrients were added in green manured maize plots in comparison to non green manured treatments. Green manuring also left a positive response on plant height, CGR, RGR leaf area, and dry matter accumulation in plants though the difference between green manured and non-green manured treatments was at par. Treatments 75 % RDF + 5 t FYM ha-1, 50 % RDF + 7.5 t FYM ha-1, 100 % RDF ha-1 and 75 % RDF + 2.5 t FYM ha-1 recorded significantly higher values of all the above said growth parameters over 50 % RDF + 5 t FYM ha-1 and control treatments. At all stages of observations, the maximum dry matter was associated with RDF (recommended doses of fertilizers) which was at par with 75 % RDF + 5 t FYM ha-1, but significantly higher over the plant dry weight recorded from all remaining treatments. A Significant difference in CGR at 30 – 60 and 60 – 90 DAS stage and in RGR at 90 DAS - harvest stage was observed due to various combinations of recommended dose of fertilizer with different doses of FYM. Number of days taken to attain the stages of 50% tasselling, silking and maturity did not differ significantly due to green manuring. However, treatment 75 % RDF + 5 t FYM ha-1 took significantly lesser number of days for these stages than other treatment combinations. The superiority of the treatment 75 % RDF + 5 t FYM ha-1 indicated a possibility of substituting 25% of RDF with 5 t FYM ha-1 without any loss in dry matter accumulation in plants of the quality protein hybrid maize in mid-hill ecosystems of Meghalaya.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaodan Wang ◽  
Yaliang Wang ◽  
Yuping Zhang ◽  
Jing Xiang ◽  
Yikai Zhang ◽  
...  

AbstractDetermination of the optimal fertilization method is crucial to maximize nitrogen use efficiency and yield of different rice cultivars. Side-deep fertilization with controlled-release nitrogen, in conjunction with machine transplanting and subsequent topdressing, was applied to Indica–japonica hybrid rice ‘Yongyou1540’ (YY1540) and indica hybrid rice ‘Tianyouhuazhan’ (TYHZ). Four nitrogen treatments were applied in 2018 and 2019: traditional nitrogen application with quick-release nitrogen (T1), single-dose deep fertilization at transplanting with 100% controlled-release nitrogen (T2), and deep fertilization of 70% controlled-release nitrogen and topdressing of 30% quick nitrogen at tillering (T3), or at panicle initiation (T4). Side-deep fertilization reduced the fertilizer application frequency without causing yield loss, T4 enhanced the yield of YY1540 by increasing the number of productive tillers and number of spikelets per panicle compared with T1, T2 and T3. The yield of TYHZ showed no significant difference among treatments. The T4 treatment decreased the number of tillers at the tilling peak stage and increased the percentage productive tillers and number of differentiated spikelets. Compared with the other treatments, T4 increased dry matter accumulation and leaf area index during panicle initiation and grain ripening, and contributed to enhanced nitrogen uptake and nitrogen utilization in YY1540. On average, nitrogen uptake and utilization in YY1540 were highest in T4, but no significant differences among treatments were observed in TYHZ. Dry matter accumulation and nitrogen uptake from panicle initiation to heading of YY1540 were correlated with number of spikelets per panicle, but no significant correlations were observed for TYHZ. Supplementary topdressing with quick-release nitrogen at the panicle initiation stage was required to increase yield of indica–japonica hybrid rice, whereas single-dose deep fertilization with controlled-release nitrogen is satisfactory for the indica hybrid cultivar.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 491
Author(s):  
Kazuki Kano ◽  
Hiroaki Kitazawa ◽  
Keitaro Suzuki ◽  
Ani Widiastuti ◽  
Hiromitsu Odani ◽  
...  

Effects of corn steep liquor (organic fertilizer, OF) and conventional chemical fertilizer (CF) on the growth and yield of bok choy (Brassica rapa var. chinensis) in summer and autumn hydroponic growing systems were compared. When OF and CF were applied with the same amount of total nitrogen in summer cultivation, there was no significant difference between yields; however, the growth rate in OF was slower than in CF. When OF was applied with twice the amount of nitrogen in CF (OF2), bok choy growth and yield were significantly inhibited in summer cultivation, likely owing to dissolved oxygen deficiency and different rates of nitrification and nitrogen absorbance by the plant root. Although the contents of potassium, calcium, and magnesium in bok choy showed no difference among the three treatments in both cultivation seasons, the carbon/nitrogen ratio tended to be higher in OF and OF2 than in CF. Lower nitric acid and higher ascorbic acid content was found in OF and OF2 than in CF. Overall, our results suggest that a comparable yield is expected by using the same nitrogen amount with a conventional recipe of chemical fertilization in autumn cultivation. However, further improvement of hydroponic management is needed in summer cultivation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Kai Yue ◽  
Lingling Li ◽  
Junhong Xie ◽  
Setor Kwami Fudjoe ◽  
Renzhi Zhang ◽  
...  

Nitrogen (N) is the most limiting nutrient for maize, and appropriate N fertilization can promote maize growth and yield. The effect of N fertilizer rates and timings on morphology, antioxidant enzymes, and grain yield of maize (Zea mays L.) in the Loess Plateau of China was evaluated. The four N levels, i.e., 0 (N0), 100 (N1), 200 (N2), and 300 (N3) kg ha−1, were applied at two timings (T1, one-third N at sowing and two-thirds at the six-leaf stage of maize; T2, one-third applied at sowing, six-leaf stage, and eleven-leaf stage of maize). The results show that N2 and N3 significantly increased the plant height, stem and leaf dry weight, and leaf area index of maize compared with a non-N-fertilized control (N0). The net photosynthetic rate, transpiration rate, stomatal conductance, and leaf chlorophyll contents were lower, while the intercellular carbon dioxide concentration was higher for non-fertilized plants compared to fertilized plants. The activities of peroxidase (POD) and superoxide dismutase (SOD) increased with N rate, but the difference between 200 and 300 kg ha−1 was not significant; further, the isozyme bands of POD and SOD also changed with their activities. Compared with a non-N-fertilized control, N2 and N3 significantly increased grain yield by 2.76- and 3.11-fold in 2018, 2.74- and 2.80-fold in 2019, and 2.71- and 2.89-fold in 2020, and there was no significant difference between N2 and N3. N application timing only affected yield in 2018. In conclusion, 200 kg N ha−1 application increased yield through optimizing the antioxidant enzyme system, increasing photosynthetic capacity, and promoting dry matter accumulation. Further research is necessary to evaluate the response of more cultivars under more seasons to validate the results obtained.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2387
Author(s):  
Santiel Alves Vieira Neto ◽  
Fábio Ribeiro Pires ◽  
João Carlos Madalão ◽  
Douglas Gomes Viana ◽  
Carlos César Evangelista de Menezes ◽  
...  

Given the high costs of agricultural production, especially due to the price of fertilisers, particularly nitrogen, the use of inoculants to supply nitrogen to soybean crops is a widely recommended practice. The objective of this study was to evaluate the feasibility of applying inoculants through seed and planting furrow in soil previously cultivated with soybean and Brazilian native “cerrado” biome soil under greenhouse conditions. Seven treatments were tested: 1) inoculation via seed (inoculant + fungicide + micronutrient), 2) treatment via seed (fungicide + micronutrient), 3) control (only seed), 4) inoculation via furrow-dose 1 (recommended dose), 5) inoculation via furrow-dose 2 (twice the recommended dose), 6) inoculation via furrow-dose 3 (three times the recommended dose) and 7) inoculation via furrow-dose 1 + seed inoculation. We evaluated plant height, fresh and dry matter weight of the aerial part and nodules, number of total, viable and non-viable nodules, number of pods per plant and grain yield. Inoculation was more effective when used in cerrado soil, but soybean performance in treatments without inoculation was higher in previously cultivated soil. Application through furrow proved to be a viable practice due to the similarity of the results obtained with the traditional application by seed.


1978 ◽  
Vol 91 (1) ◽  
pp. 47-60 ◽  
Author(s):  
J. N. Gallagher ◽  
P. V. Biscoe

SummaryAnalysis of measurements of absorbed radiation and leaf area indices of wheat and barley crops showed that throughout most of growth the fraction of absorbed solar radiation could be described by a simple exponential equation.For several of these crops grown under a wide range of weather and husbandry at Sutton Bonington and Rothamsted, 2-weekly values of crop growth rate (C) were closely related to radiation absorbed until ear emergence and about 3·0 g of dry matter (D.M.) were produced by each MJ of photosynthetically active radiation (PAR) absorbed. Final crop weight was closelyrelated to total PAR absorbed during growth (SA); on average about 2·2 g D.M. were produced per MJ absorbed, equivalent to a growth efficiency (Eg) of approximately 3·9%. Unfertilized and drought-stressed crops had a smaller Eg.The fraction of total crop D.M. harvested as grain (harvest index) varied more for wheat than for barley. Calculations of a maximum realizable grain yield made using the largest values of Eg and SA for the crops measured and assuming a harvestindex of 0.53 (achieved in an experimental crop) showed a grain D.M. yield of 10·3 t D.M./ha to be possible. To achieve such a yield would require full crop cover from the beginning of April until the end of July in a typical English growing season.


Euphytica ◽  
2021 ◽  
Vol 217 (4) ◽  
Author(s):  
N. A. Adetoro ◽  
O. O. Oworu ◽  
A. L. Nassir ◽  
A. Bello ◽  
E. Parkes ◽  
...  

AbstractThis study aimed at determining shoot and root characteristics of cassava as affected by root yield and the influence of soil moisture on vegetative growth and yield. Thirty cassava genotypes were evaluated for morphological and physiological characterization in three locations in Nigeria: Ibadan, Mokwa and Zaria. Randomized complete block design was used with four replicates. Studies on the pasting properties of the genotypes were also carried out. Data were collected on plant height, stem girth, stay-green ability, garri and fresh root weight. Genotypes differed significantly (P < 0.05) across and within locations for shoot and root characteristics. Across locations, genotype 011663 had the highest plant height (132.4 cm); 30572 had the largest stem girth (8.6 cm); and 010040 was the best stay-green (2.2). Genotype 011086 had the highest number of roots per plot (95.7), 950289 had the highest fresh root yield (24.3 t/ha), and 990554 had the highest percentage of dry matter (35.2). Trends in root yields across locations were Ibadan (28.9 t/ha), Mokwa (20.3 t/ha), and Zaria (8 t/ha). Five genotypes IITA-TMS-IBA950289, 010034, 990554, 011807, and 980581 had negligible interactions with the environment and so have broad adaptation and are considered stable; and two clones 011807 and 950166 were found to be the best for pasting properties. Breeding strategies that consider root size, total root number, harvest index, dry matter, with applications for household foods and industrial uses, will be an effective and efficient way to select genotypes for high yield.


2021 ◽  
Vol 50 (2) ◽  
pp. 261-267
Author(s):  
Ahmed A Moursy ◽  
MM Ismail

A field experiment was conducted to observe effects of water requirements and different fertilizers on wheat crop’s yield, production and N uptake. Data showed that dry matter yield of wheat grain was higher with Hu + AS (5.82 mt/ha) compared with applied water 100% ETC. Concerning the rate of water regime, the best significant grain yield of wheat was obtained with 100% ETc (4.23 mt/ha). Nitrogen derived from fertilizer Ndff% with 50% ETC of water was 28.41 and 27.28% for grain and straw, respectively. At 100% ETC of water the Ndff% was 30.16 and 27.75% for grain and straw, respectively. Nitrogen utilized by grains and straw was more efficient under treatment Hu + AS combined with 50% Etc, 100% Etc recording 15.6 and 32.23%, respectively. At 50% ETC of water requirements for wheat crop, higher N remained in 0 - 15, 15 - 30 and 30 - 45 cm soil depth were nearly closed to each other compared with the treatment made at 100% ETC of water requirements. Bangladesh J. Bot. 50(2): 261-267, 2021 (June)


Sign in / Sign up

Export Citation Format

Share Document