scholarly journals Effect of Inclusion and Filtration on Grain Refinement Efficiency of Aluminum Alloy

Author(s):  
Jiawei Yang ◽  
Yijiang Xu ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
...  

AbstractIt is well known that the filtration efficiency of ceramic foam filters (CFF) on aluminum melt can be significantly reduced by the addition of grain refiner particles under a high inclusion load. Also, it is usually considered that the filtration process has little impact on grain refinement efficiency. In this work, the influence of inclusions and filtration on the grain refinement effect of AA 6060 alloy has been studied. This was done through TP-1 type solidification experiments where the aluminum melt prior to and after the filter during a pilot-scale filtration test was investigated. In the experiments, 80 PPi CFFs were used to filtrate aluminum melt with an ultra-high inclusion load and two addition levels of Al–3Ti–1B master alloys. It is found that both inclusions and filtration significantly reduce the grain refinement efficiency of the grain refiner master alloys. A detailed characterization of the used filters shows that the reduction of grain refinement efficiency is due to the strong adherence of TiB2 particles to the oxide films, which are blocked by the CFF during filtration. A grain size prediction model based on deterministic nucleation mechanisms and dendritic growth kinetics has been applied to calculate the solidification grain size and estimate the loss of effective grain refiner particles during filtration. It is shown that due to the strong adherence between TiB2 particles and oxide films in the melt, the high addition level of aluminum chips also has an influence on reducing the grain refinement efficiency of aluminum melt without filtration. The results of this study extended our understanding of the behavior and performance of inoculant particles in CFF and their interactions with the inclusions.

Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
Stig Tjøtta ◽  
...  

AbstractThe addition of grain refiner particles in the aluminum melt is known to reduce the filtration efficiency of ceramic foam filter (CFF). In the present work, a systematic study on the influence of the addition level of Al-Ti-B master alloys and the inclusion level on the filtration performance of aluminum melt has been investigated by pilot-scale filtration tests using 50 PPi and 80 PPi filters. The inclusion level of the melt has been measured using both LiMCA and PoDFA. For 80 PPi CFF, the N20 inclusion (diameter larger than 20 μm) value in the post-filtrated melt does not increase when an ultra-high level of inclusions is introduced in the form of chips. For the melts with a low level of grain refiners (~ 0.5 kg/ton), the filtration performance of CFF is not affected by grain refiners, regardless of inclusion load. An addition of 2.0 kg/ton grain refiners reduces the filtration performance for melts with a high inclusion level, where post-filtration inclusions with the size of 15-20 µm were significantly increased. It is found, however, for the melts with an ultra-high inclusion load, the filtration performance of 80 PPi CFF is not affected by the grain refiner addition up to 2.0 kg/ton. The interactions between inclusions and grain refiner particles and the filtration mechanism have been studied by characterizing the spent filter and measuring the pressure drop during the filtration process. It is revealed that the strong adherence between oxide film with grain refiner particles dominates the grain refiner influence on the filtration performance of CFF. During the filtration process, oxide films have strong influences on the capturing of other inclusions such as oxide particles and TiB2 particles by the filter. A mechanism based on the interactions between oxide films and grain refiner particles is proposed to explain the CFF performance under the influence of grain refiner.


Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Yanjun Li

AbstractIn this work, a systematic study on the interactions between aluminum oxide films and TiB2 grain refiner particles and their effect on grain refinement behavior have been conducted. Oxide films were introduced into a commercial purity aluminum melt by adding AA 6061 alloy chips while the grain refiner particles were introduced by adding Al-3T-1B master alloy. Strong sedimentation of TiB2 grain refiner particles was observed in aluminum melt without chip addition during long-time settling. Most of the TiB2 particles were settled and accumulated at the bottom of crucible. In contrast, the sedimentation of TiB2 particles is much less in the melt with the addition of oxide films. A large fraction of TiB2 particles were found to be adhered to the oxide films located at the top part of the crucible, which inhibited the sedimentation of grain refiner particles. TP-1 type tests were also done to study the grain refinement efficiency of Al-3Ti-1B master alloy under different melt cleanliness and settling time. It is found that sedimentation of TiB2 particles greatly reduces the grain refinement efficiency. The introduction of oxide films seems to slightly alleviate the fading effect. This is owing to the strong adherence between the oxide films and TiB2 particles, which leads to a retardation of particle sedimentation.


Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ping Shen ◽  
Yanjun Li

AbstractIt is well known that grain refiner additions in aluminum melts significantly reduce the filtration efficiency of ceramic foam filters (CFF). However, the mechanism remains unclear. In this work, the influence of grain refiners on the wettability of alumina substrate by aluminum melt was studied by both conventional sessile drop and improved sessile drop methods at different temperatures and vacuums. Commercial purity aluminum (CP-Al) and grain refiner master alloys Al-3Ti-1B, Al-5Ti-1B, Al-3Ti-0.15C were used. It is found that master alloy melts wet alumina substrate better than CP-Al. Generally, a lower temperature or lower vacuum results in a higher contact angle. The roles of grain refiner particles in improving the wettability were studied by analyzing the solidification structure of post wetting-test droplets using SEM. Strong sedimentation of grain refiner particles at the metal-substrate interface was observed, which is attributed to the higher density of grain refiner particles compared to the Al melt. Meanwhile, a large fraction of grain refiner particles agglomerates at the oxide skin of the aluminum droplets, showing a strong adhesion between the particles and oxide skin. Such adhering of grain refiner particles is proposed to enhance the rupture of the original oxide skin of the droplets and slow down the reoxidation process at the surface layer. Both adherence of grain refiner particles to surface oxide skin and sedimentation of particles at the metal-substrate interface are responsible for the wetting improvement.


2017 ◽  
Vol 898 ◽  
pp. 1231-1235 ◽  
Author(s):  
Shun Cheng Wang ◽  
Ji Lin Li ◽  
Chun Lei Gan ◽  
Kai Hong Zheng

The Al-5Ti-1B, Al-10Ti, Al-4B master alloys and TiB2 powder were applied to refine the pure aluminum, respectively. The effects of the TiAl3 phase, TiB2 particle, and AlB2 phase on the grain size of pure aluminum were compared. The grain refinement mechanism of the Al-5Ti-1B grain refiner was studied. The results showed that the TiAl3 phase was an effective heterogeneous nucleus of the α-Al grain. But the TiAl3 phase in the Al-5Ti-1B grain refiner was not the heterogeneous nucleus of the α-Al grain due to its re-melting in the Al melt. The separate TiB2 particle or AlB2 phase was not the heterogeneous nucleus of the α-Al grain. However, the TiB2 coated by the TiAl3 phase can be the effective heterogeneous nucleus of the α-Al grain. The grain refinement mechanism of the Al-5Ti-1B grain refiner can be summarized as follows: when the Al-5Ti-1B grain refiner is added into the Al melt, the TiAl3 phases are re-melted to release the Ti atoms, while the TiB2 particles are remaining in the Al melt. During the solidification of the Al melt, the Ti atoms are segregating on the surface of TiB2 particles to form the TiAl3 phases. The TiB2 particles coated by the TiAl3 phases then reacts with the Al melt to generate α-Al crystal nucleus.


2015 ◽  
Vol 828-829 ◽  
pp. 23-28 ◽  
Author(s):  
Vadakke Madam Sreekumar ◽  
N. Hari Babu ◽  
Dmitry G. Eskin ◽  
Z. Fan

In this study, grain refinement efficiency of a new oxide master alloy based on MgAl2O4 was demonstrated in Al alloys. The grain size of the reference alloy was reduced by 50-60% with the addition of the master alloy and introduction of ultrasonic cavitation. While cooling rate has an influence on the grain size reduction, higher levels of addition of master alloy was found to be not effective in further reducing the grain size.


Materials ◽  
2016 ◽  
Vol 9 (11) ◽  
pp. 869 ◽  
Author(s):  
Jianhua Zhao ◽  
Jiansheng He ◽  
Qi Tang ◽  
Tao Wang ◽  
Jing Chen

2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


2014 ◽  
Vol 20 (3) ◽  
pp. 183-190
Author(s):  
Mehdi Dehnavi ◽  
Mohsen Haddad Sabzevar

Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA) has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study was to investigate the effect of grain refinement on the grain size of Al-4.8 wt.%Cu alloy by cooling curve analysis. To do this, alloy was grain refined by different amount of Al-5Ti-1B master alloy and all samples were solidified at constant cooling rate of 0.19 ℃/s. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. The results show that the segregating power of Ti is very high and it segregates to the nucleant–liquid interface which leads to constitutional supercooling within which other nucleant particles get activated for nucleation. Other results show that with considering the changes in the primary undercooling (ΔTRU) as the main factor to determine the effectiveness of grain refinement process, it was found that by grain refinement, the value of undercooling decrease was approximately zero. 


2018 ◽  
Vol 33 (12) ◽  
pp. 1782-1788
Author(s):  
Kun Xia Wei ◽  
Yan Wei Zhang ◽  
Wei Wei ◽  
Xian Liu ◽  
Qing Bo Du ◽  
...  

Abstract


Sign in / Sign up

Export Citation Format

Share Document