scholarly journals Development of Thermomechanical Processes as an Alternative to Grain Refiners in 18 Carat Gold Alloys

2021 ◽  
Vol 30 (4) ◽  
pp. 2680-2690
Author(s):  
Mirko Pigato ◽  
Luca Pezzato ◽  
Claudio Cason ◽  
Manuele Dabalà

AbstractThe use of grain refiners, such as iridium, in 18 kt gold alloys is a common practice in jewelry industrial applications. The use of these elements leads, however, to an increase in the costs of raw materials and greater attention during the solidification phases and during the refining and recycling of alloys is required. This work aims to demonstrate that through the optimization of thermo-mechanical processes, it is possible to obtain a result comparable to that obtained with refiner in terms of workability, mechanical and aesthetic properties and corrosion behavior. The study focused on evaluating the grain growth in annealing processes after plastic deformation, also examining the casting phase and the effect of the different cooling rates. The samples, after the different thermo-mechanical treatments, were characterized in terms of microstructure, grain size and micro-hardness comparing the results with the ones of an iridium-containing alloy. The results showed that with proper optimization of annealing time is possible to obtain, without grain refiners, gold alloys with properties similar to ones obtained with Iridium as a grain refiner.

2009 ◽  
Vol 1224 ◽  
Author(s):  
Alan F. Jankowski

AbstractNanocrystalline nanolaminate (ncnl) structures are widely used in the study of physical properties in order to engineer materials for a variety of industrial applications. Often, novel and interesting mechanical behaviours that are found in nanolaminate materials can be linked with two characteristic features of structure. These are the layer pair spacing and the grain size. For the case of nanolaminates synthesized by physical vapor deposition processes, the layer spacing corresponds with the repeating sequence of layer pairs and can be referred to as composition wavelength. The grain size is the average width of the tapered columnar structure along the growth direction. Since the mechanical properties of strength and hardness are known to functionally vary with the separation between dislocations in crystalline materials, both structural features can potentially contribute to the total interfacial area and the characteristic separation of interfaces that mitigate dislocation motion. In this investigation, the individual contribution of layer pair spacing and grain size to the total interfacial structure are each quantified in an assessment of strength and hardness. A model is proposed for the total interfacial area of the material volume under plastic deformation that can quantify the interfacial area contribution from the layer pairs and the grain size. It is anticipated that each structural feature can potentially dominate the plastic deformation of the nanolaminate as dependent upon the specific layer pair spacing, the grain size, and the extent of plastic deformation.


2009 ◽  
Vol 620-622 ◽  
pp. 89-92
Author(s):  
Hoon Cho ◽  
Jae Hong Ha ◽  
Byoung Soo Lee ◽  
Sung Ho Chang ◽  
Je Sik Shin

Eco-friendly grain refinement of A3003 alloy was studied by addition of non-toxic Al-Ti alloy because of toxic-fluorine in Al-Ti-B alloys which used as a representative grain refiner for aluminum and its alloys. TiAl3 phase in Al-Ti alloy bring to decrease grain size of A3003 alloy. But, grain growth occurred with prolonged holding time due to the solution of Ti into aluminum matrix. In contrast, lasting grain refinement of A3003 alloy was occurred in graphite crucible. It can be mentioned that carbon comes from graphite crucible was combined with Ti solute in aluminum melt and then TiC acts as a heterogeneous nucleation for A3003 alloy.


2012 ◽  
Vol 05 ◽  
pp. 307-315 ◽  
Author(s):  
S.A. TORBATI-SARRAF ◽  
R. MAHMUDI

Different amounts of Al -5 Ti -1 B master alloy ( TiBAl ) were added to the AZ 31 magnesium alloy ( Mg -3 Al -1 Zn -0.2 Mn ) as grain refiner and the resulting microstructure and grain size distributions were studied after extrusion and equal channel angular pressing (ECAP). Results showed that the addition of 0.6% TiBAl had the strongest grain refinement effect, reducing the grain sizes by 54.5 and 48.5% in the extruded and ECAPed conditions, respectively. The observed grain refinement was partly due to the presence of the thermally-stable micron- and submicron-sized particles in the melt which act as nucleation sites during solidification. During the high-temperature extrusion and ECAP processes, dynamic recrystallization (DRX) and grain growth are likely to occur. However, the mentioned particles will help in reducing the grain size by the particle stimulated nucleation (PSN) mechanism. Furthermore, the pinning effect of these particles can oppose grain growth by reducing the grain boundary migration. These two phenomena together with the partitioning of the grains imposed by the severe plastic deformation in the ECAP process have all contributed to the achieved ultrafine-grained structure in the AZ 31 alloy.


2012 ◽  
Vol 510-511 ◽  
pp. 241-247
Author(s):  
A.I.O. Zaid ◽  
S.M.A. Al-Qawabah

Aluminum and its alloys are the second most commonly used metal for a variety of industrial applications. They normally solidify in coarse grain columnar structure which tends to reduce their mechanical behavior and surface quality. It was found that this large grain size structure can be refined by using titanium, Ti, or titanium plus boron, Ti+B, and using the latter resulted in reducing the amount of Ti to fifth its values although boron itself is not a grain refiner. This is why it is becoming customary in the aluminum foundry to add Ti or Ti+B to their melt before solidification. The available literature reveals that most of the work is directed towards the metallurgical aspects and little was directed on the mechanical aspects. To the best of the authors knowledge, no work was directed on the aspects of grain refiners on the formability of metals. In this paper, the effect of addition of Zr on the mechanical properties of commercially pure aluminum grain refined by Ti+B in the as cast and extruded conditions is investigated. Comparison between the addition of Zr alone or Zr+Ti+B is also investigated. It was found that addition of Ti+B either alone or in the presence of Zr resulted in grain refinement of aluminum both in the as cast and in the cold extruded conditions. The maximum reduction in grain size was 53.22% and 76.92%, respectively. Similarly, it was found that addition of Ti+B either alone or in the presence of Zr to Al resulted in improvement of its Vickers's hardness, However addition of Zr alone to Al resulted in decrease of its hardness in the as cast conditions but increase in the extruded condition .The maximum increase was in the case of adding both of them in the extruded condition being 94.59 %, (from Hv 37 to Hv72). Similarly the ultimate tensile strength, UTS, was improved at all additions except when Ti+B or Zr is added alone. On the whole it may be concluded that addition of Zr to Al grain refined by Ti+B resulted in enhancement of its grain size and improvement of its hardness, mechanical strength and ductility in the cold extruded conditions and resulted in slight decrease of its ductility when added in the as cast condition.


2011 ◽  
Vol 409 ◽  
pp. 480-485
Author(s):  
T. Chan ◽  
David Backman ◽  
R. Bos ◽  
T. Sears ◽  
I. Brooks ◽  
...  

Commercially available polycrystalline nickel (grain size: 30 µm) and electrodeposited nanocrystalline nickel (grain size: 30 nm) were analyzed for the effect of stress-induced heat generation during plastic deformation at room temperature. Tensile coupons in conformance to ASTM E8 standard were tested at a strain rate of 10-1/s to record the amount heat dissipated using a high resolution infrared detector. The maximum temperature increases recorded for nanocrystalline and polycrystalline nickel close to sample fracture were 58°C and 70°C, respectively. Grain growth in nanocrystalline nickel due to stress-induced heat generation is unlikely since the maximum temperature during deformation is below the previously reported onset temperature for grain growth in nanocrystalline nickel.


2011 ◽  
Vol 675-677 ◽  
pp. 771-774 ◽  
Author(s):  
Song Wei Gu ◽  
Hai Hao ◽  
Can Feng Fang ◽  
Shou Hua Ji ◽  
Xing Guo Zhang

A fine grain size generally leads to improved structural uniformity of magnesium alloys. AlN has been identified as a potential grain refiner and electromagnetic stirring may have great effects on microstructure and grain growth. This study will be focused on the effects of AlN particles and electromagnetic stirring on the as-cast structure of AZ31 alloys.The grain refinement mechanism of both methods on magnesium alloy and their interaction effects are also discussed.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 6003-6009
Author(s):  
XIAOQUN WANG ◽  
TAKEJI ABE

Microscopic hardness on free surface of polycrystalline metal during plastic deformation is closely related to the inhomogeneous deformation in respective grains. Uniaxial tensile tests were carried out on annealed pure aluminum sheet specimens with different averaged grain size and also on annealed pure titanium sheet specimen. The microscopic hardness was measured with the Vickers type micro-hardness testing machine. The increase in micro-hardness is larger at the grain boundary area than the central area of grains. The increase in the hardness is dependent on the averaged grain size of polycrystalline metals. The experimental results are discussed in relation to Hall-Petch relation concerning the grain size dependence of the yield stress or the flow stress.


2011 ◽  
Vol 312-315 ◽  
pp. 166-171 ◽  
Author(s):  
D. Azimi-Yancheshmeh ◽  
M. Aghaie-Khafri

ECAP (Equal Channel Angular Pressing) is one of the useful methods of Severe Plastic Deformation (SPD) to reach ultrafine grain size. ECAP was carried out on Al-Fe-Si alloy. All grains stretched along the ECAP direction. Samples were ECAPed for one pass into an ECAP mold with two equal channels (1 cm × 1 cm) with 90o between them. After ECAP, specimens were heat treated (semisolided) for different times and temperatures for achieving globular grains. Optical microscopy has been used to evaluate the microstructure. By ECAP and semisolid processes, the structure becomes fine and globular. The kinetic grain growth has been studied for this alloy by the calculation of the D = Ktn equation and log(D)-log(t) curves.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


Sign in / Sign up

Export Citation Format

Share Document