scholarly journals Effect of grit blasting and subsequent heat treatment on stress rupture property of a Ni-based single-crystal superalloy SGX3

2020 ◽  
Vol 33 (12) ◽  
pp. 1681-1688
Author(s):  
Jinshan He ◽  
Zhengrong Yu ◽  
Longfei Li ◽  
Xitao Wang ◽  
Qiang Feng
2007 ◽  
Vol 546-549 ◽  
pp. 1443-1446 ◽  
Author(s):  
Zhi Gang Kong ◽  
Lei Ji ◽  
Shu Suo Li ◽  
Ya Fang Han ◽  
Hui Bin Xu

The effect of heat treatment on microstructures and stress rupture property of a Ni3Al base single crystal alloy DDIC6 was studied in the present investigate. The single crystal specimens were produced by screw selection crystal method. The heat treatment for the alloy was 1300°C/10h+1120°C/4h+870°C/32h and 1300°C/10h+870°C/32h.The microstructures were examined by SEM, TEM and X-ray EDS techniques. The stress rupture tests were carried out in air by constant load creep machines under 1100°C/130MPa with the specimens size of φ5×25 mm. The experimental results showed that the as-cast large size γ′ phases entirely dissolved after 1300°C/10h, and secondary fine γ′ phases precipitated by following aging at 1120°C and 870°C for certain periods of time. The stress rupture life under 1100°C/130MPa increased from 20~30hrs for as-cast condition to 60~100hrs for heat treatment condition. The improvement of the creep resistance of the alloy may attribute to the decrement of the elements segregation at dendrite and interdendritic areas, and the proper size and distribution of γ′ phases.


2021 ◽  
Vol 136 ◽  
pp. 107237
Author(s):  
Xinxin Liu ◽  
Taiwen Huang ◽  
Jiachen Zhang ◽  
Dong Wang ◽  
Jian Zhang ◽  
...  

2017 ◽  
Vol 898 ◽  
pp. 498-504
Author(s):  
Hui Fen Li ◽  
Li Jun Liu ◽  
Ming Xue ◽  
La Mei Cao

The microstructure of a third generation single crystal superalloy DD10 with 0°~15° grain boundary and stress rupture property at 980°C/280MPa and 1100°C/140MPa have been studied and compared in the present investigation. The results showed that the primary dendritic stems at either side of low angle boundary indicated angular differences as compared with structure of principal [001] crystal. After thermal treatment, the grain boundary changed from irregular chain structure of γ’ and γ to flat and thin γ layer. Under the condition of 980°C/280MPaand 1100°C/140MPa, stress rupture life of the DD10 alloy with 7° low angle boundary decreased little compared with [001] crystal. The rupture was non-intergranular fracture. The 9° low angle boundary did not have a remarkable effect on stress rupture property of the DD10 alloy.


2015 ◽  
Vol 816 ◽  
pp. 513-517 ◽  
Author(s):  
Zhen Xue Shi ◽  
Shi Zhong Liu ◽  
Xiao Guang Wang ◽  
Jia Rong Li

The single crystal superalloy with [001] orientation were prepared by screw selecting method in the directionally solidified furnace. Three different cooling method, water cooling (WC), air cooling (AC) and furnace cooling (FC) were used after same solution treatment. Then these specimens received same two-step aging treatment. Influence of solution cooling method on the microstructure and stress rupture properties of the alloy under the test condition of 980 °C and 300 MPa was investigated. The microstructures of the samples were examined by scanning electron microscope (SEM). The results showed that the solution cooling method of heat treatment played an important role in the microstructure and stress rupture properties of the alloy. The size of γ′ phase and the width of the γ matrix channel of the alloy increased with decreasing cooling rate. The stress rupture properties of the alloy increased at first and decreased afterwards with decreasing cooling rate. The alloy with air cooling (AC) has the best stress rupture properties. The γ′ phase changed into a perfect raft structure during the stress rupture process of the specimens with AC method. However, the γ′ phase changed into a very irregular raft microstructure in the specimens with the water cooling (WC) and furnace cooling (FC) method. The micro-cracks in the specimen with irregular raft make the initiation and interconnection easier than that in the specimen with regular raft. Therefore, the alloy with AC method has optimum microstructure and stress rupture property.


Sign in / Sign up

Export Citation Format

Share Document