Roller dynamometer particle immission* measurement
AbstractUrban traffic is a significant contributor of particulate matter to the environment (Kessinger et al. in https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/hgp_luftqualitaet_2020_bf.pdf, 2021). Hence, there is a high interest in the measured data of roadside immission measurement station. In the federal state Saxony (Germany), the State Office for Environment, Agriculture and Geology (LfULG) is responsible for supervision of the air pollution. In a joint project, the LfULG, the Leibniz Institute for Tropospheric Research (TROPOS) and the Chair of Combustion Engines and Powertrain Systems of the Technical University of Dresden (Lehrstuhl für Verbrennungsmotoren und Antriebssysteme, LVAS) measured the particulate immission* from a selection of passenger cars in an “environment simulation” Weinhold et al. (https://publikationen.sachsen.de/bdb/artikel/36768q, 2020). Especially direct injection spark ignition engines, DISI, without particle filter have a high particulate matter emission, depending on the operating condition. However, an increase of the particulate matter immission due to the rising market penetration of DISI engines was not measurable at the immission measurement stations of LfULG. To investigate the effect of vehicle exhaust emission and immission, an experiment was developed to measure particulate matter immission similar to road conditions on a chassis dynamometer. Five used cars with different engines, exhaust after treatment systems and mileage were evaluated regarding their emissions and particulate immissions. Unexpectedly, a high amount of ultrafine particulate matter smaller 100 nm was found during the emission measurements, although the exhaust emissions were completely extracted to the CVS measurement system. It was concluded that these particles were assignable to break and tire wear. This paper summarizes the most important findings, the complete report is available in Weinhold et al. (https://publikationen.sachsen.de/bdb/artikel/36768q, 2020).