A New Recognition and Pose Estimation of Tiny Electronic Parts Using Principal Component Analysis and Harris Corner Features

2019 ◽  
Vol 15 (1) ◽  
pp. 43-51
Author(s):  
Jiheon Lee ◽  
Wangheon Lee
2021 ◽  
Vol 13 (20) ◽  
pp. 4123
Author(s):  
Hanqi Wang ◽  
Zhiling Wang ◽  
Linglong Lin ◽  
Fengyu Xu ◽  
Jie Yu ◽  
...  

Vehicle pose estimation is essential in autonomous vehicle (AV) perception technology. However, due to the different density distributions of the point cloud, it is challenging to achieve sensitive direction extraction based on 3D LiDAR by using the existing pose estimation methods. In this paper, an optimal vehicle pose estimation network based on time series and spatial tightness (TS-OVPE) is proposed. This network uses five pose estimation algorithms proposed as candidate solutions to select each obstacle vehicle's optimal pose estimation result. Among these pose estimation algorithms, we first propose the Basic Line algorithm, which uses the road direction as the prior knowledge. Secondly, we propose improving principal component analysis based on point cloud distribution to conduct rotating principal component analysis (RPCA) and diagonal principal component analysis (DPCA) algorithms. Finally, we propose two global algorithms independent of the prior direction. We provided four evaluation indexes to transform each algorithm into a unified dimension. These evaluation indexes’ results were input into the ensemble learning network to obtain the optimal pose estimation results from the five proposed algorithms. The spatial dimension evaluation indexes reflected the tightness of the bounding box and the time dimension evaluation index reflected the coherence of the direction estimation. Since the network was indirectly trained through the evaluation index, it could be directly used on untrained LiDAR and showed a good pose estimation performance. Our approach was verified on the SemanticKITTI dataset and our urban environment dataset. Compared with the two mainstream algorithms, the polygon intersection over union (P-IoU) average increased by about 5.25% and 9.67%, the average heading error decreased by about 29.49% and 44.11%, and the average speed direction error decreased by about 3.85% and 46.70%. The experiment results showed that the ensemble learning network could effectively select the optimal pose estimation from the five abovementioned algorithms, making pose estimation more accurate.


VASA ◽  
2012 ◽  
Vol 41 (5) ◽  
pp. 333-342 ◽  
Author(s):  
Kirchberger ◽  
Finger ◽  
Müller-Bühl

Background: The Intermittent Claudication Questionnaire (ICQ) is a short questionnaire for the assessment of health-related quality of life (HRQOL) in patients with intermittent claudication (IC). The objective of this study was to translate the ICQ into German and to investigate the psychometric properties of the German ICQ version in patients with IC. Patients and methods: The original English version was translated using a forward-backward method. The resulting German version was reviewed by the author of the original version and an experienced clinician. Finally, it was tested for clarity with 5 German patients with IC. A sample of 81 patients were administered the German ICQ. The sample consisted of 58.0 % male patients with a median age of 71 years and a median IC duration of 36 months. Test of feasibility included completeness of questionnaires, completion time, and ratings of clarity, length and relevance. Reliability was assessed through a retest in 13 patients at 14 days, and analysis of Cronbach’s alpha for internal consistency. Construct validity was investigated using principal component analysis. Concurrent validity was assessed by correlating the ICQ scores with the Short Form 36 Health Survey (SF-36) as well as clinical measures. Results: The ICQ was completely filled in by 73 subjects (90.1 %) with an average completion time of 6.3 minutes. Cronbach’s alpha coefficient reached 0.75. Intra-class correlation for test-retest reliability was r = 0.88. Principal component analysis resulted in a 3 factor solution. The first factor explained 51.5 of the total variation and all items had loadings of at least 0.65 on it. The ICQ was significantly associated with the SF-36 and treadmill-walking distances whereas no association was found for resting ABPI. Conclusions: The German version of the ICQ demonstrated good feasibility, satisfactory reliability and good validity. Responsiveness should be investigated in further validation studies.


Sign in / Sign up

Export Citation Format

Share Document