Few-Shot Abnormal Network Traffic Detection Based on Multi-scale Deep-CapsNet and Adversarial Reconstruction
AbstractDetecting various attacks and abnormal traffic in the network is extremely important to network security. Existing detection models used massive amounts of data to complete abnormal traffic detection. However, few-shot attack samples can only be intercepted in certain special scenarios. In addition, the discrimination of traffic attributes will also be affected by the change of feature attitude. But the traditional neural network model cannot detect this kind of attitude change. Therefore, the accuracy and efficiency of few-shot sample abnormal traffic detection are very low. In this paper, we proposed a few-shot abnormal network traffic detection method. It was composed of the multi-scale Deep-CapsNet and adversarial reconstruction. First, we designed an improved EM vector clustering of the Deep-CapsNet. The attitude transformation matrix was used to complete the prediction from low-level to high-level features. Second, a multi-scale convolutional capsule was designed to optimize the Deep-CapsNet. Third, an adversarial reconstruction classification network (ARCN) was proposed. The supervised source data classification and the unsupervised target data reconstruction were achieved. Moreover, we proposed an adversarial training strategy, which alleviated the noise interference during reconstruction. Fourth, the few-shot sample classification were obtained by combining multi-scale Deep-CapsNet and adversarial reconstruction. The ICSX2012 and CICIDS2017 datasets were used to verify the performance. The experimental results show that our method has better training performance. Moreover, it has the highest accuracy in two-classification and multi-classification. Especially it has good anti-noise performance and short running time, which can be used for real-time few-shot abnormal network traffic detection.