Multi-objective optimization of shared nearest neighbor similarity for feature selection

2015 ◽  
Vol 37 ◽  
pp. 751-762 ◽  
Author(s):  
Partha Pratim Kundu ◽  
Sushmita Mitra
Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 954-958
Author(s):  
Yinjiang Li ◽  
Song Xiao ◽  
Paolo Di Barba ◽  
Mihai Rotaru ◽  
Jan K. Sykulski

AbstractThe paper introduces a new approach to kriging based multi-objective optimization by utilizing a local probability of improvement as the infill sampling criterion and the nearest neighbor check to ensure diversification and uniform distribution of Pareto fronts. The proposed method is computationally fast and linearly scalable to higher dimensions.


Author(s):  
Lan Zhang

To improve the convergence and distribution of a multi-objective optimization algorithm, a hybrid multi-objective optimization algorithm, based on the quantum particle swarm optimization (QPSO) algorithm and adaptive ranks clone and neighbor list-based immune algorithm (NNIA2), is proposed. The contribution of this work is threefold. First, the vicinity distance was used instead of the crowding distance to update the archived optimal solutions in the QPSO algorithm. The archived optimal solutions are updated and maintained by using the dynamic vicinity distance based m-nearest neighbor list in the QPSO algorithm. Secondly, an adaptive dynamic threshold of unfitness function for constraint handling is introduced in the process. It is related to the evolution algebra and the feasible solution. Thirdly, a new metric called the distribution metric is proposed to depict the diversity and distribution of the Pareto optimal. In order to verify the validity and feasibility of the QPSO-NNIA2 algorithm, we compare it with the QPSO, NNIA2, NSGA-II, MOEA/D, and SPEA2 algorithms in solving unconstrained and constrained multi-objective problems. The simulation results show that the QPSO-NNIA2 algorithm achieves superior convergence and superior performance by three metrics compared to other algorithms.


2021 ◽  
Vol 9 (8) ◽  
pp. 888
Author(s):  
Qasem Al-Tashi ◽  
Emelia Akashah Patah Akhir ◽  
Said Jadid Abdulkadir ◽  
Seyedali Mirjalili ◽  
Tareq M. Shami ◽  
...  

The accurate classification of reservoir recovery factor is dampened by irregularities such as noisy and high-dimensional features associated with the reservoir measurements or characterization. These irregularities, especially a larger number of features, make it difficult to perform accurate classification of reservoir recovery factor, as the generated reservoir features are usually heterogeneous. Consequently, it is imperative to select relevant reservoir features while preserving or amplifying reservoir recovery accuracy. This phenomenon can be treated as a multi-objective optimization problem, since there are two conflicting objectives: minimizing the number of measurements and preserving high recovery classification accuracy. In this study, wrapper-based multi-objective feature selection approaches are proposed to estimate the set of Pareto optimal solutions that represents the optimum trade-off between these two objectives. Specifically, three multi-objective optimization algorithms—Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Grey Wolf Optimizer (MOGWO) and Multi-Objective Particle Swarm Optimization (MOPSO)—are investigated in selecting relevant features from the reservoir dataset. To the best of our knowledge, this is the first time multi-objective optimization has been used for reservoir recovery factor classification. The Artificial Neural Network (ANN) classification algorithm is used to evaluate the selected reservoir features. Findings from the experimental results show that the proposed MOGWO-ANN outperforms the other two approaches (MOPSO and NSGA-II) in terms of producing non-dominated solutions with a small subset of features and reduced classification error rate.


Sign in / Sign up

Export Citation Format

Share Document