Regulation of sympathetic nerve activity by AMPA and NMDA receptors in the rostral ventrolateral medulla of obese Zucker rats

2011 ◽  
Vol 163 (1-2) ◽  
pp. 79
Author(s):  
D.A. Huber ◽  
A.M. Schreihofer
2011 ◽  
Vol 301 (1) ◽  
pp. H230-H240 ◽  
Author(s):  
Domitila A. Huber ◽  
Ann M. Schreihofer

Obese Zucker rats (OZR) have elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) compared with lean Zucker rats (LZR). We examined whether altered tonic glutamatergic, angiotensinergic, or GABAergic inputs to the rostral ventrolateral medulla (RVLM) contribute to elevated SNA and MAP in OZR. Male rats (14–18 wk) were anesthetized with urethane (1.5 g/kg iv), ventilated, and paralyzed to record splanchnic SNA, heart rate (HR), and MAP. Inhibition of the RVLM by microinjections of muscimol eliminated SNA and evoked greater decreases in MAP in OZR vs. LZR ( P < 0.05). Antagonism of angiotensin AT1 receptors in RVLM with losartan yielded modest decreases in SNA and MAP in OZR but not LZR ( P < 0.05). However, antagonism of ionotropic glutamate receptors in RVLM with kynurenate produced comparable decreases in SNA, HR, and MAP in OZR and LZR. Antagonism of GABAA receptors in RVLM with gabazine evoked smaller rises in SNA, HR, and MAP in OZR vs. LZR ( P < 0.05), whereas responses to microinjections of GABA into RVLM were comparable. Inhibition of the caudal ventrolateral medulla, a major source of GABA to the RVLM, evoked attenuated rises in SNA and HR in OZR ( P <0.05). Likewise, inhibition of nucleus tractus solitarius, the major excitatory input to caudal ventrolateral medulla, produced smaller rises in SNA and HR in OZR. These results suggest the elevated SNA and MAP in OZR is derived from the RVLM and that enhanced angiotensinergic activation and reduced GABAergic inhibition of the RVLM may contribute to the elevated SNA and MAP in the OZR.


2002 ◽  
Vol 13 (1) ◽  
pp. 35-41
Author(s):  
Hans P. Schobel ◽  
Helga Frank ◽  
Ramin Naraghi ◽  
Helmut Geiger ◽  
Elmar Titz ◽  
...  

ABSTRACT. Recent data suggest a causal relationship between essential hypertension and neurovascular compression (NVC) at the rostral ventrolateral medulla. An increase of central sympathetic outflow might be an underlying pathomechanism. The sympathetic nerve activity to muscle was recorded in 21 patients with hypertension with NVC (NVC+ group) and in 12 patients with hypertension without NVC (NVC− group). Heart rate variability, respiratory activity, BP, and central venous pressure at rest and during unloading of cardiopulmonary baroreceptors with lower-body negative pressure and during a cold pressor test were also measured. Resting sympathetic nerve activity to muscle was twice as high in the NVC+ group compared with the NVC− group (34 ± 22 versus 18 ± 6 bursts/min; P < 0.05). Resting heart rate (P = 0.06) and low- to high-frequency power ratio values (P = NS) (as indicators of cardiac sympathovagal balance) tended to be augmented as well in the NVC+ group. The sympathetic nerve activity to muscle response to the cold pressor test was increased in the NVC+ group versus the NVC− group (+15 ± 11 versus 6 ± 12 bursts/min; P = 0.05), but hemodynamic and sympathetic nerve responses to lower-body negative pressure did not differ between the two groups. It is concluded that NVC of the rostral ventrolateral medulla in patients with essential hypertension is accompanied by increased central sympathetic outflow. Therefore, these data support the hypothesis described in the literature: in a subgroup of patients, essential hypertension might be causally related to NVC of the rostral ventrolateral medulla, at least in part, via an increase in central sympathetic outflow.


Sign in / Sign up

Export Citation Format

Share Document