scholarly journals Regulation of sympathetic nerve activity and arterial pressure by the rostral ventrolateral medulla in obese Zucker rats.

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Domitila Augusta Huber ◽  
Ann Marie Schreihofer
2001 ◽  
Vol 90 (1) ◽  
pp. 248-260 ◽  
Author(s):  
Ling-Zong Hong ◽  
Jon-Son Kuo ◽  
Mao-Hsiung Yen ◽  
Chok-Yung Chai

We investigated the responses of systemic arterial pressure and vertebral sympathetic nerve activity to glutamate microinjections (0.1 M, 70 nl) in the dorsomedial (DM) and the rostral ventrolateral medulla (RVLM) before hypoxia and after reoxygenation (posthypoxia) after various degrees of hypoxia in anesthetized cats. Hypoxia was produced by ventilating 5% O2 and 95% N2 for different durations (hypoxia I-III). In intact cats, the glutamate-induced systemic arterial pressure and vertebral nerve activity responses of the DM were depressed after all degrees of hypoxia. Posthypoxic depression in the RVLM, however, was not observed until hypoxia II and III. Precollicular decerebration prevented depression in the RVLM, but, for the DM, it was effective only for hypoxia I. Baro- and chemoreceptor denervation abolished all posthypoxic depression in both the DM and the RVLM. Pressor responses to tyramine (100–400 μg/kg iv) remained unchanged after all degrees of hypoxia. These results suggest that the DM is more susceptible to hypoxia than the RVLM. The peripheral baro- and chemoreceptors and the suprapontine structures apparently play an important role in posthypoxic depression. Moreover, the depression is not due to the postganglionic norepinephrine depletion.


2009 ◽  
Vol 296 (4) ◽  
pp. R1019-R1026 ◽  
Author(s):  
Stephen B. G. Abbott ◽  
Paul M. Pilowsky

Galanin is present in neurons in the brain that are important in the control of arterial pressure, and intracisternal administration of galanin evokes hypotension, but the site of action is unknown. In urethane-anesthetized, vagotomized mechanically ventilated Sprague-Dawley rats ( n = 34), we investigated the effects of microinjecting galanin (1 mM, 50 nl, 50 pmol) into the rostral ventrolateral medulla on resting splanchnic sympathetic nerve activity, arterial pressure, heart rate, and phrenic nerve activity. Second, we determined the effect of microinjecting galanin into the rostral ventrolateral medulla on the cardiovascular response to stimulation of central and peripheral chemoreceptors, arterial baroreceptors, and the somatosympathetic reflex. Galanin caused a prolonged reduction in resting splanchnic sympathetic nerve activity (−37.0 ± 7.2% of baseline), mean arterial pressure (−17.0 ± 3.5 mmHg), and heart rate (−25.0 ± 9.1 beats/min). Galanin increased the sympathoinhibitory response to aortic depressor nerve stimulation by 51.8%, had no effect on the somatosympathetic reflex, and markedly attenuated the effect of hypercapnia and hypoxia on arterial pressure (by 65% and 92.4% of control, respectively). These results suggest a role for galanin neurotransmission in the integration of the cardiovascular responses to hypoxia, hypercapnia, and the sympathetic baroreflex in the rostral ventrolateral medulla. The data suggest that galanin may be an important peptide in the homeostatic regulation of chemosensory reflexes.


2011 ◽  
Vol 301 (1) ◽  
pp. H230-H240 ◽  
Author(s):  
Domitila A. Huber ◽  
Ann M. Schreihofer

Obese Zucker rats (OZR) have elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) compared with lean Zucker rats (LZR). We examined whether altered tonic glutamatergic, angiotensinergic, or GABAergic inputs to the rostral ventrolateral medulla (RVLM) contribute to elevated SNA and MAP in OZR. Male rats (14–18 wk) were anesthetized with urethane (1.5 g/kg iv), ventilated, and paralyzed to record splanchnic SNA, heart rate (HR), and MAP. Inhibition of the RVLM by microinjections of muscimol eliminated SNA and evoked greater decreases in MAP in OZR vs. LZR ( P < 0.05). Antagonism of angiotensin AT1 receptors in RVLM with losartan yielded modest decreases in SNA and MAP in OZR but not LZR ( P < 0.05). However, antagonism of ionotropic glutamate receptors in RVLM with kynurenate produced comparable decreases in SNA, HR, and MAP in OZR and LZR. Antagonism of GABAA receptors in RVLM with gabazine evoked smaller rises in SNA, HR, and MAP in OZR vs. LZR ( P < 0.05), whereas responses to microinjections of GABA into RVLM were comparable. Inhibition of the caudal ventrolateral medulla, a major source of GABA to the RVLM, evoked attenuated rises in SNA and HR in OZR ( P <0.05). Likewise, inhibition of nucleus tractus solitarius, the major excitatory input to caudal ventrolateral medulla, produced smaller rises in SNA and HR in OZR. These results suggest the elevated SNA and MAP in OZR is derived from the RVLM and that enhanced angiotensinergic activation and reduced GABAergic inhibition of the RVLM may contribute to the elevated SNA and MAP in the OZR.


2002 ◽  
Vol 13 (1) ◽  
pp. 35-41
Author(s):  
Hans P. Schobel ◽  
Helga Frank ◽  
Ramin Naraghi ◽  
Helmut Geiger ◽  
Elmar Titz ◽  
...  

ABSTRACT. Recent data suggest a causal relationship between essential hypertension and neurovascular compression (NVC) at the rostral ventrolateral medulla. An increase of central sympathetic outflow might be an underlying pathomechanism. The sympathetic nerve activity to muscle was recorded in 21 patients with hypertension with NVC (NVC+ group) and in 12 patients with hypertension without NVC (NVC− group). Heart rate variability, respiratory activity, BP, and central venous pressure at rest and during unloading of cardiopulmonary baroreceptors with lower-body negative pressure and during a cold pressor test were also measured. Resting sympathetic nerve activity to muscle was twice as high in the NVC+ group compared with the NVC− group (34 ± 22 versus 18 ± 6 bursts/min; P < 0.05). Resting heart rate (P = 0.06) and low- to high-frequency power ratio values (P = NS) (as indicators of cardiac sympathovagal balance) tended to be augmented as well in the NVC+ group. The sympathetic nerve activity to muscle response to the cold pressor test was increased in the NVC+ group versus the NVC− group (+15 ± 11 versus 6 ± 12 bursts/min; P = 0.05), but hemodynamic and sympathetic nerve responses to lower-body negative pressure did not differ between the two groups. It is concluded that NVC of the rostral ventrolateral medulla in patients with essential hypertension is accompanied by increased central sympathetic outflow. Therefore, these data support the hypothesis described in the literature: in a subgroup of patients, essential hypertension might be causally related to NVC of the rostral ventrolateral medulla, at least in part, via an increase in central sympathetic outflow.


Sign in / Sign up

Export Citation Format

Share Document