Mechanistic evaluation of adsorption and corrosion inhibition capabilities of novel indoline compounds for oil well/tubing steel in 15% HCl

2021 ◽  
pp. 133481
Author(s):  
Tarun Kanti Sarkar ◽  
Mahendra Yadav ◽  
I.B. Obot
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. Yadav ◽  
Sumit Kumar ◽  
P. N. Yadav

Acidization is an oil reservoir stimulation technique for increasing oil well productivity. Hydrochloric acid is used in oil and gas production to stimulate the formation. The acid treatment occurs through N80 steel tubes. The process requires a high degree of corrosion inhibition of tubing material (N80 steel). In the present investigation effect of synthesized amino acid compounds, namely, acetamidoleucine (AAL) and benzamidoleucine (BAL) as corrosion inhibitors for N80 steel in 15% HCl solution was studied by polarization, AC impedance (EIS), and weight loss measurements. It was found that both the inhibitors were effective inhibitors and their inhibition efficiency was significantly increased with increasing concentration of inhibitors. Polarization curves revealed that the studied inhibitors represent mixed type inhibitors. AC impedance studies revealed that charge transfer resistance increases and double layer capacitance decreases in presence of inhibitors. Adsorption of inhibitors at the surface of N80 steel was found to obey Langmuir isotherm.


2012 ◽  
Vol 199 (11) ◽  
pp. 1335-1356 ◽  
Author(s):  
M. A. Migahed ◽  
Ahmed A. Farag ◽  
S. M. Elsaed ◽  
R. Kamal ◽  
H. Abd El-Bary

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. Yadav ◽  
Sumit Kumar ◽  
P. N. Yadav

In the present investigation the protective ability of 1-(2-aminoethyl)-2-octadecylimidazoline (AEODI) and 1-(2-octadecylamidoethyl)-2-octadecylimidazoline (ODAEODI) as corrosion inhibitors for N80 steel in 15% hydrochloric acid has been studied, which may find application as ecofriendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentration of synthesized inhibitors AEODI and ODAEODI was added to test solution (15% HCl), and corrosion inhibition of N80 steel was tested by weight loss, potentiodynamic polarization, and AC impedance measurements. Influence of temperature (298 to 323 K) on the inhibition behaviour was studied. Surface studies were performed by using SEM. It was found that both the inhibitors were effective inhibitors, and their inhibition efficiency was significantly increased with increasing their concentration. Polarization curves revealed that the used inhibitors represent mixed-type inhibitors. The adsorption of used inhibitors led to a reduction in the double-layer capacitance and an increase in the charge transfer resistance. The adsorption of used compounds was found to obey Langmuir isotherm. The adsorption of the corrosion inhibitors at the surface of N80 steel is the root cause of corrosion inhibition.


2016 ◽  
Vol 63 (2) ◽  
pp. 153-159 ◽  
Author(s):  
Yuan Pan ◽  
Fengtao Zhan ◽  
Zhifeng Lu ◽  
Yan Lin ◽  
Zhen Yang ◽  
...  

Purpose – The purpose of this paper is to set out a study of a Mannich base, which was synthesized and used as an acidizing corrosion inhibitor first, and to the corrosion inhibitor mechanism. Design/methodology/approach – A Mannich base, 1-phenyl-3-(1-pyrrolidinyl)-propanone (PHPP), was synthesized with acetophenone, pyrrolidine and formaldehyde at pH = approximately 2-3. The structure of PHPP was characterized by elemental analysis and Fourier transform infrared spectroscopy (FTIR). The corrosion inhibition of PHPP on N80 steel in 15 per cent hydrochloric acid (HCl) was studied by weight loss method, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX), and the adsorption behavior of PHPP on the surface of N80 steel was discussed. Findings – The results showed that the inhibition efficiency reached to 99.8 per cent and corrosion rate was 2.65 g·m-2·h-1 at 0.6 per cent of PHPP concentration in 15 per cent HCl, which indicated that PHPP presented excellent corrosion inhibition performance. The results of SEM and EDAX analysis showed that PHPP could be absorbed on the surface of N80 steel. The adsorption process of PHPP on the surface of N80 steel was chemisorption. This process was spontaneous and obeyed Langmuir adsorption isotherm. Originality/value – It was found that PHPP presented excellent corrosion inhibition performance, and it is practicable to enhance oil production in oilfield development as a oil-well acidizing inhibitor. The study results can provide theoretical guidelines for the development of the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document