Partially-plastic theoretical model of thermoplastic composite pipes and comparison of composite failure criteria

2021 ◽  
pp. 114834
Author(s):  
Chen Shi ◽  
Heping Xia ◽  
Jialu Wang ◽  
Xingxian Bao ◽  
Hongwei Li ◽  
...  
2021 ◽  
Author(s):  
Heping Xia ◽  
Chen Shi ◽  
Jialu Wang ◽  
Xingxian Bao ◽  
Hongwei Li ◽  
...  

2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940033 ◽  
Author(s):  
Sang-Jin Lee ◽  
Il-Sup Chung ◽  
Sung-Youl Bae

This research presents structural design and analysis results of applying a composite boom structure on a Concrete Pump Truck (CPT). Carbon Fiber Reinforced Plastic (CFRP) is used to complete the structural design of the end boom to reduce the weight of the CPT. The weight of the newly designed end boom is reduced by 32% compared to the original steel component. Structural analysis is accomplished by applying static load combinations of self-weight of the boom and the weights of the pipes, the concrete and the drain hose. The results show that the tip deflection is reduced by 30% compared to the conventional end boom. Also, equivalent stress is considerably lower than the conventional design. Composite failure evaluation of the CFRP end boom is conducted by post-processing the stress results using Puck’s failure criteria. The evaluation results show that the design criteria are met on the static load of the pump truck. Specifically, it is expected that fiber failure and inter fiber failure of the boom do not occur under loading conditions according to the design evaluation results.


Author(s):  
H. Xia ◽  
C. Shi ◽  
J. Wang ◽  
X. Bao ◽  
H. Li ◽  
...  

Abstract Thermoplastic composite pipes (TCPs) are increasingly used to transport hydrocarbons and water in the oil and gas industry due to their superior properties including corrosion resistance, thermal insulation, light weight, etc. The cross-section of TCPs generally consists of three layers: inner liner, composite laminate, and outer jacket. Three layers are bonded together and form a solid-wall construction. Inner liner and outer jacket made of thermoplastic polymer provide protective barriers for the laminate to against the inner fluid and outer environment. The laminate is constructed by an even number of helically wounded continuous fiber reinforced thermoplastic composite tapes. In this study, mechanical behaviors of a TCP under an internal pressure were investigated by using analytical and finite element analysis (FEA) methods. The analytical method which is based on the three-dimensional (3D) anisotropy elastic theory can take account of non-uniformly distributed stress and strain through the thickness of the pipe wall. FEA models were setup by using the software ABAQUS to predict the stress distribution of the pipe. 3D Tsai-Wu failure criterion was used to predict the maximum internal pressure of the pipe. Effects of some critical parameters, such as the winding angle of composite tapes and the number of reinforced plies, on the internal pressure capacity of TCPs were studied. Results obtained from the analytical and FEA methods were fairly agreed with each other, which showed that with the increasing of the number of reinforced plies the internal pressure capacity of a TCP gradually increases and approaches to an extreme value. In addition, the optimal winding angle which results the maximum internal pressure is not a constant value, instead, it varies with the increasing thickness of the laminate layer. This study provides useful tools and guidance for the design and analysis of TCPs, and is currently under validation through experiments.


2019 ◽  
Author(s):  
Teofilo Barbosa ◽  
Renato Bastos ◽  
Henk De Boer ◽  
Ramón Rojas-Díaz

2011 ◽  
Vol 480-481 ◽  
pp. 113-116
Author(s):  
Ying Tie ◽  
Cheng Li ◽  
Ping Xu

Based failure criteria of composite materials structural damage and simulation of finite element dynamic impact, the drop process and damage failure of composite cylinder are calculated and analysed. For composite cylinders with different wind angles falling from a height, the stresses of internal points during the impact process are obtained. Based on the value of the process stress, the failure of the cylinder is analysed. The results show that at the moment when the cylinder bounces back after impacted with the ground, the stress and strain reaches to the maximum. The maximum hoop stresses are at cylinder mouth and cylinder bottom which collide with ground. Maximum axial tensile stresses are at the central body of cylinder. The stress distribution of 13 degrees fiber angle of cylinder is slightly less than that of 25 degree. By Tsai-Wu composite failure criterion, there is no failure of the composite cylinder.


Author(s):  
J. Wang ◽  
C. Shi ◽  
G. Fu ◽  
Z. Liu ◽  
X. Bao ◽  
...  

Abstract Subsea pipelines are prone to be damaged by the falling objects from ships or offshore platforms, which may result in economic losses and pollution. The dimensions of dent were commonly used to evaluate the impact resistance of pipes made from carbon steel. Thermoplastic composite pipes (TCPs), due to their superior properties including corrosion resistance, thermal insulation, fast installation, etc., are increasingly used as the subsea pipelines. The TCP is made from thermoplastic resins and reinforced by continuous fibers. Because of the brittle nature of carbon fibers and glass fibers, the dimensions of dent are not suitable for assessment of impact resistance of a TCP. In the present work, a procedure was proposed using the internal pressure capacity as an indicator to evaluate the lateral impact resistance of a TCP. First, the internal pressure capacity of an intact TCP was evaluated. Second, a quasi-static simulation was conducted by applying a lateral compression force on the intact TCP using a rigid ball, until one of the composite plies in the reinforcement layer failed. The quasi-static simulation provided an initial estimate of the minimum energy that causes the start of damage of the TCP. Third, the impact simulations were performed by using a rigid ball hitting the TCP and, then, the internal pressure capacity of the damaged TCP was evaluated. Finally, the internal pressure capacity of the damaged pipe, compared with that of the intact pipe, was used as an indicator to evaluate the lateral impact resistance of the TCP. In this study, a glass-fiber reinforced polyethylene (PE) pipe of an inner diameter of 150 mm was modeled by ABAQUS to illustrate the procedure. A theoretical method was proposed to calculate the impact energy of a dropped object in a shallow water. The example studied in the present work showed that the modeled TCP was not strong enough to survive the lateral impact caused by the dropped object and should be buried to a certain depth beneath the seabed if used as a subsea pipeline.


Sign in / Sign up

Export Citation Format

Share Document