Effects of Thickness and Winding Angle of the Laminate on Internal Pressure Capacity of Thermoplastic Composite Pipes

Author(s):  
H. Xia ◽  
C. Shi ◽  
J. Wang ◽  
X. Bao ◽  
H. Li ◽  
...  

Abstract Thermoplastic composite pipes (TCPs) are increasingly used to transport hydrocarbons and water in the oil and gas industry due to their superior properties including corrosion resistance, thermal insulation, light weight, etc. The cross-section of TCPs generally consists of three layers: inner liner, composite laminate, and outer jacket. Three layers are bonded together and form a solid-wall construction. Inner liner and outer jacket made of thermoplastic polymer provide protective barriers for the laminate to against the inner fluid and outer environment. The laminate is constructed by an even number of helically wounded continuous fiber reinforced thermoplastic composite tapes. In this study, mechanical behaviors of a TCP under an internal pressure were investigated by using analytical and finite element analysis (FEA) methods. The analytical method which is based on the three-dimensional (3D) anisotropy elastic theory can take account of non-uniformly distributed stress and strain through the thickness of the pipe wall. FEA models were setup by using the software ABAQUS to predict the stress distribution of the pipe. 3D Tsai-Wu failure criterion was used to predict the maximum internal pressure of the pipe. Effects of some critical parameters, such as the winding angle of composite tapes and the number of reinforced plies, on the internal pressure capacity of TCPs were studied. Results obtained from the analytical and FEA methods were fairly agreed with each other, which showed that with the increasing of the number of reinforced plies the internal pressure capacity of a TCP gradually increases and approaches to an extreme value. In addition, the optimal winding angle which results the maximum internal pressure is not a constant value, instead, it varies with the increasing thickness of the laminate layer. This study provides useful tools and guidance for the design and analysis of TCPs, and is currently under validation through experiments.

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
H. Xia ◽  
C. Shi ◽  
J. Wang ◽  
X. Bao ◽  
H. Li ◽  
...  

Abstract The cross section of thermoplastic composite pipes (TCPs) consists of three layers: an inner liner, reinforcement laminates, and an outer jacket; the three layers are fully bonded together to form a solid-walled structure. In this study, the mechanical behaviors of TCPs under internal pressures were investigated using analytical and finite element analysis (FEA) methods. The analytical method that is based on the three-dimensional (3D) anisotropy elastic theory takes into account the nonuniform distribution of stresses and strains through the wall thickness of the pipe. FEA models were setup using the software abaqus to predict the stress distribution of a TCP. The 3D Tsai-Wu failure criterion was used to predict the maximum burst pressure of TCPs. Effects of winding angles and the number of reinforcement plies on the burst pressure of TCPs were studied. Results derived from the analytical method and the FEA method verified each other, which show that the burst pressure of a TCP increases asymptotically as the number of reinforcement plies increases. The optimal winding angle associated with the maximum burst pressure is not a constant value, instead, it varies as the thickness of the laminate layer increases. This study provides useful tools and guidance for the design and analysis of TCPs, while further validation experiments are still needed.


2021 ◽  
Author(s):  
Heping Xia ◽  
Chen Shi ◽  
Jialu Wang ◽  
Xingxian Bao ◽  
Hongwei Li ◽  
...  

Author(s):  
Guoqiang Li ◽  
Su-Seng Pang ◽  
Randy J. Jones ◽  
Jack E. Helms ◽  
Eyassu Woldesenbet

Abstract Deepwater activities are the future of the Offshore Oil and Gas Industry. Huge reserves have been located in the Gulf of Mexico as well as off the Coast of West Africa and Brazil. The development of floating production platforms and vessels offers challenges to the facilities engineer who must consider new materials to meet stringent topsides weight limitations. A critical technology for facilities piping in offshore platforms is joining technique. This paper discusses the development of a hybrid joining approach by using heat-activated coupling and adhesive bonding. The technique procedure is presented via specimen fabrication. A total of eleven coupled specimens are prepared and evaluated using standardized internal pressure tests. The feasibility of this new joining technique in offshore piping is discussed based on the internal pressure test results.


Author(s):  
Upali Panapitiya ◽  
Haoyu Wang ◽  
Syed Jafri ◽  
Paul Jukes

Large diameter integral steel flanges are widely used in many applications in the oil and gas industry. The flanges of nominal pipe sizes, 26-inch and above with ring-joint gaskets as specified in ASME B 16.47 Standard, are used in the offshore applications for the transportation of oil and gas from production facilities. These pipelines require flanged connections at end terminations, mid-line tie-ins and expansion loops. The conventional design of large diameter steel flanges is based on one-dimensional analytical methods similar to the procedure in ASME VIII Boiler and Pressure Vessel Code, Division 1 Appendix 2. The effects of axial forces and bending moments are approximated by calculating an equivalent pressure. This usually results in conservative designs for the large flanges because it estimates the required stud pre-tension based on the assumption that the gasket will be unloaded entirely to a minimum stress, whereas only a small section of the gasket is subjected to low stress. This technical paper presents the quasi-static, nonlinear, and three-dimensional finite element models of large diameter steel flanged joint for the determination of stud pre-tension and change of stud tension under various loading conditions. The finite element analysis results are compared with the results obtained by using the equivalent pressure method and flange “Joint Diagram”.


2016 ◽  
Vol 16 (09) ◽  
pp. 1550063 ◽  
Author(s):  
Chandra Sekhar Kuppusamy ◽  
Saravanan Karuppanan ◽  
Santosh S. Patil

Pipelines in the oil and gas industry are prone to extensive internal corrosion which leads to premature failures. Furthermore, corrosion defects within certain proximity interact to reduce the overall strength of a pipe and are termed as interacting corrosion defects. Pipelines may also experience complex loadings due to geotechnical movements such as landslides and internal pressure. Therefore, an understanding of the behavior of corroded pipelines under multiple loadings is important for the safe operation of pipelines. Extensive literature review indicates that major design codes only consider the effect of interacting corrosion defects on the burst pressure of pipes, with less attention paid to the structural behavior of steel pipes under multiple loadings. Therefore, this study focuses on the effect of interacting corrosion defects of equal depth on the local buckling strength of X46 steel pipes using the finite element analysis (FEA). Results showed that the corrosion defects interact to reduce the overall buckling strength of the pipe. Furthermore, circumferentially aligned corrosion defects are more critical than axially aligned corrosion defects, due to the greater loss of material along the circumference of the pipe. Besides, the effect of interactions of corrosion defects on the buckling strength decreases as the internal pressure increases. Lastly, as the depth of the defects increases, their interactions become more severe, which can significantly reduce the overall buckling strength of the steel pipe.


Author(s):  
Imanol Martinez Perez ◽  
Øystein Gabrielsen

Abstract Chains are extensively used in the Oil and Gas industry for mooring vessels or floating platforms, both for temporary and long-term moorings. Moreover, recently they found a new application in the mooring of floating wind turbines. The integrity of mooring systems is of great importance for both industries. Failure Records [1]–[2] indicate that fatigue of mooring chains is one of the main causes of failure, and therefore their lifetime prediction represents an important challenge for industry. Chains are intended to work under Tension Loading, however, anomalous loading modes such as Out-of-Plane Bending (OPB) or Twisting can appear. For example, OPB caught the attention of engineers after the Girassol incident; where it was identified as the main cause of failure of several chain links eight months after the installation [3]. Since this failure, OPB has attracted the attention of several research programs and multiple publications can be found in the literature (For example, [4]–[5]). Twist may occur during the installation of a chain or during service due to torque generated in the near-by elements of the mooring (for example wire cables). This paper presents a computational fatigue assessment of mooring chains working in twisted conditions. It is based on a two steps analysis: a mechanical and a fatigue analysis. The mechanical analysis accounts for the initial residual stress state of the chain after manufacturing and subsequent proof loading. The result is the stabilized cycle of the multiaxial stress field, which is obtained through an elastic-plastic three-dimensional Finite Element Analysis (FEA). Then, the fatigue analysis is performed to predict the failure location and determine the lifetime. The predicted failure location has shown good agreement with fatigue cracks found in recovered chain links in the North Sea after more than 15 years of service.


2015 ◽  
Vol 799-800 ◽  
pp. 196-200
Author(s):  
Abhilash M. Bharadwaj ◽  
Sonny Irawan ◽  
Saravanan Karuppanan ◽  
Mohamad Zaki bin Abdullah ◽  
Ismail bin Mohd Saaid

Casing design is one of the most important parts of the well planning in the oil and gas industry. Various factors affecting the casing material needs to be considered by the drilling engineers. Wells partaking in thermal oil recovery processes undergo extreme temperature variation and this induces high thermal stresses in the casings. Therefore, forecasting the material behavior and checking for failure mechanisms becomes highly important. This paper uses Finite Element Methods to analyze the behavior two of the frequently used materials for casing - J55 and L80 steels. Modeling the casing and application of boundary conditions are performed through Ansys Workbench. Effect of steam injection pressure and temperature on the materials is presented in this work, indicating the possibilities of failure during heating cycle. The change in diameter of the casing body due to axial restriction is also presented. This paper aims to draw special attention towards the casing design in high temperature conditions of the well.


Author(s):  
Christiane L. Machado ◽  
Sudheer Chand

The Offshore Oil and Gas Industry has converted a large number of units from trading tankers and carriers into Floating Production, Storage and Offloading units (FPSOs). Several of these have been moored offshore Brazil during the last 15 years. Following the discovery of offshore pre-salt fields some years ago, demand for FPSOs has increased, and the forecasts for productive field lives have grown. The result of these developments is the need to extend the service lives of existing FPSOs. The main aim of this study is to investigate FPSO structural response to environmental conditions and functional loads, considering the actual available tools for numerical simulations and Rule requirements, which currently are basic requirements for design review for Classification. The procedure was developed from one selected FPSO converted from a trading Very Large Crude Carrier (VLCC) tanker approximately 15 years ago and includes investigation of the impact on hull behavior comparing the motion analyses of the production unit under environmental data and software capabilities available at the period of conversion and actual performance: variances in the environmental (sea scatter diagrams) datasets; updates to Classification requirements for defining offloading conditions, environmental loads, acceptance criteria and remaining fatigue life (RFL); and incorporating the most recent gauged thickness for primary structure. The selected FPSO was evaluated according to prescriptive Rule requirements and also using finite element analysis, taking into account the previous conditions of Classification approval as well as the actual requirements and available data. Structural analysis included one global model and some local refined models to address strength, buckling and fatigue capacity of the typical portions/connections of the hull. The comparisons performed from the results of these analyses are a crucial step toward understanding the structural capacity of the FPSO at the conversion stage, its performance during the last 15 years, and its remaining service life. Differences were tabulated and evaluated so that a more precise level of uncertainty could be achieved for predicting the estimated remaining service life, and consequently, a new and dedicated approach to investigate the existing FPSO fleet is being generated.


Author(s):  
Chike Okoloekwe ◽  
Muntaseer Kainat ◽  
Doug Langer ◽  
Sherif Hassanien ◽  
J.J. Roger Cheng ◽  
...  

Oil and gas pipelines traverse long distances and are often subjected to mechanical forces that result in permanent distortion of its geometric cross section in the form of dents. In order to prioritize the repair of dents in pipelines, dents need to be ranked in order of severity. Numerical modeling via finite element analysis (FEA) to rank the dents based on the accumulated localized strain is one approach that is considered to be computationally demanding. In order to reduce the computation time with minimal effect to the completeness of the strain analysis, an approach to the analytical evaluation of strains in dented pipes based on the geometry of the deformed pipe is presented in this study. This procedure employs the use of B-spline functions, which are equipped with second-order continuity to generate displacement functions, which define the surface of the dent. The strains associated with the deformation can be determined by evaluating the derivatives of the displacement functions. The proposed technique will allow pipeline operators to rapidly determine the severity of a dent with flexibility in the choice of strain measure. The strain distribution predicted using the mathematical model proposed is benchmarked against the strains predicted by nonlinear FEA. A good correlation is observed in the strain contours predicted by the analytical and numerical models in terms of magnitude and location. A direct implication of the observed agreement is the possibility of performing concise strain analysis on dented pipes with algorithms relatively easy to implement and not as computationally demanding as FEA.


Author(s):  
Celal Cakiroglu ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
Millan Sen

Pipelines can be subjected to significant amounts of tensile forces due to geotechnical movements like slope instabilities and seismic activities as well as due to frost heave and thaw cycles in arctic regions. The tensile strain capacity εtcrit of pipelines is crucial in the prediction of rupture and loss of containment capability in these load cases. Currently the Oil and Gas Pipeline Systems code CSA Z662-11 0 contains equations for the prediction of εtcrit as a function of geometry and material properties of the pipeline. These equations resulted from extensive experimental and numerical studies carried out by Wang et al [2]–[6] using curved wide plate tests on pipes having grades X65 and higher. Verstraete et al 0 conducted curved wide plate tests at the University of Ghent which also resulted in tensile strain capacity prediction methods and girth weld flaw acceptability criteria. These criteria are included in the European Pipeline Research Group (EPRG) Tier 2 guidelines. Furthermore Verstrate et al 0 introduced a pressure correction factor of 0.5 in order to include the effect of internal pressure in the tensile strain capacity predictions in a conservative way. Further research by Wang et al with full scale pipes having an internal pressure factor of 0.72 also showed that εtcrit decreases in the presence of internal pressure [10]–[15]. In their work, Wang et al presented a clear methodology for the design of full scale experiments and numerical simulations to study the effect of internal pressure on the tensile strain capacity of pipes with girth weld flaws [10]–[15]. However, there has been limited testing to enable a precise understanding of the tensile strain capacity of pipes with grades less than X65 as a function of girth weld flaw sizes and the internal pressure. In this paper the experimental setup for the testing of grade X52 full scale specimens with 12″ diameter and ¼″ wall thickness is demonstrated. In the scope of this research 8 full scale specimens will be tested and the results will be used to formulate the tensile strain capacity of X52 pipes under internal pressure. The specimens are designed for the simultaneous application of displacement controlled tensile loading and the internal pressure. Finite element analysis is applied in the optimization process for the sizes of end plates and connection elements. Also the lengths of the full scale specimens are determined based on the results from finite element analysis. The appropriate lengths are chosen in such a way that between the location of the girth weld flaw and the end plates uniform strain zones could be obtained. The internal pressure in these experiments is ranging between pressure values causing 80% SMYS and 30% SMYS hoop stress. The end plates and connection elements of the specimens are designed in such a way that the tensile displacement load is applied with an eccentricity of 10% of the pipe diameter with the purpose of increasing the magnitude of tensile strains at the girth weld flaw location. The results of two full scale experiments of this research program are presented. The structural response from the experiments is compared to the finite element simulation. The remote strain values of the experiment are found to be higher than the εtcrit values predicted by the equations in 0.


Sign in / Sign up

Export Citation Format

Share Document