Del Pezzo surface fibrations obtained by blow-up of a smooth curve in a projective manifold

2005 ◽  
Vol 340 (8) ◽  
pp. 581-586 ◽  
Author(s):  
Toru Tsukioka
Author(s):  
Ingrid Bauer ◽  
Fabrizio Catanese

Abstract The Del Pezzo surface Y of degree 5 is the blow up of the plane in 4 general points, embedded in $${\mathbb {P}}^5$$P5 by the system of cubics passing through these points. It is the simplest example of the Buchsbaum–Eisenbud theorem on arithmetically-Gorenstein subvarieties of codimension 3 being Pfaffian. Its automorphism group is the symmetric group $${\mathfrak {S}}_5$$S5. We give canonical explicit $${\mathfrak {S}}_5$$S5-invariant Pfaffian equations through a 6$$\times $$×6 antisymmetric matrix. We give concrete geometric descriptions of the irreducible representations of $${\mathfrak {S}}_5$$S5. Finally, we give $${\mathfrak {S}}_5$$S5-invariant equations for the embedding of Y inside $$({\mathbb {P}}^1)^5$$(P1)5, and show that they have the same Hilbert resolution as for the Del Pezzo of degree 4.


Author(s):  
J Ross Goluboff

Abstract A general smooth curve of genus six lies on a quintic del Pezzo surface. Artebani and Kondō [ 4] construct a birational period map for genus six curves by taking ramified double covers of del Pezzo surfaces. The map is not defined for special genus six curves. In this paper, we construct a smooth Deligne–Mumford stack ${\mathfrak{P}}_0$ parametrizing certain stable surface-curve pairs, which essentially resolves this map. Moreover, we give an explicit description of pairs in ${\mathfrak{P}}_0$ containing special curves.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander Perepechko

AbstractLet Y be a smooth del Pezzo surface of degree 3 polarized by a very ample divisor that is not proportional to the anticanonical one. Then the affine cone over Y is flexible in codimension one. Equivalently, such a cone has an open subset with an infinitely transitive action of the special automorphism group on it.


Author(s):  
Yeping Zhang

Abstract Bershadsky, Cecotti, Ooguri, and Vafa constructed a real-valued invariant for Calabi–Yau manifolds, which is called the BCOV invariant. In this paper, we consider a pair $(X,Y)$, where $X$ is a compact Kähler manifold and $Y\in \big |K_X^m\big |$ with $m\in{\mathbb{Z}}\backslash \{0,-1\}$. We extend the BCOV invariant to such pairs. If $m=-2$ and $X$ is a rigid del Pezzo surface, the extended BCOV invariant is equivalent to Yoshikawa’s equivariant BCOV invariant. If $m=1$, the extended BCOV invariant is well behaved under blowup. It was conjectured that birational Calabi–Yau three-folds have the same BCOV invariant. As an application of our extended BCOV invariant, we show that this conjecture holds for Atiyah flops.


1941 ◽  
Vol 63 (2) ◽  
pp. 256
Author(s):  
C. Ronald Cassity

2016 ◽  
Vol 152 (6) ◽  
pp. 1198-1224 ◽  
Author(s):  
Ivan Cheltsov ◽  
Jihun Park ◽  
Joonyeong Won

For each del Pezzo surface $S$ with du Val singularities, we determine whether it admits a $(-K_{S})$-polar cylinder or not. If it allows one, then we present an effective $\mathbb{Q}$-divisor $D$ that is $\mathbb{Q}$-linearly equivalent to $-K_{S}$ and such that the open set $S\setminus \text{Supp}(D)$ is a cylinder. As a corollary, we classify all the del Pezzo surfaces with du Val singularities that admit non-trivial $\mathbb{G}_{a}$-actions on their affine cones defined by their anticanonical divisors.


2011 ◽  
Vol 202 ◽  
pp. 127-143
Author(s):  
Afsaneh Mehran

AbstractThe aim of this paper is to describe the geometry of the generic Kummer surface associated to a (1, 2)-polarized abelian surface. We show that it is the double cover of a weak del Pezzo surface and that it inherits from the del Pezzo surface an interesting elliptic fibration with twelve singular fibers of typeI2.


Sign in / Sign up

Export Citation Format

Share Document