PL1-2. The role of inflammasome processed cytokines in driving Th17 cells and IL-17 producing γδ T cells in infection and autoimmunity

Cytokine ◽  
2011 ◽  
Vol 56 (1) ◽  
pp. 3
Author(s):  
Kingston H.G. Mills ◽  
Aisling Dunne ◽  
Lara Dungan ◽  
Jean Fletcher ◽  
Sarah Higgins ◽  
...  
Keyword(s):  
T Cells ◽  
Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


The Lancet ◽  
1996 ◽  
Vol 347 (9015) ◽  
pp. 1631-1632 ◽  
Author(s):  
J.S.H. Gaston ◽  
Adam Hasan ◽  
Farida Fortune ◽  
Amanda Wilson ◽  
Thomas Lehner

2000 ◽  
Vol 107 (2) ◽  
pp. 124-129 ◽  
Author(s):  
G Borsellino ◽  
O Koul ◽  
R Placido ◽  
D Tramonti ◽  
S Luchetti ◽  
...  

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Kevin D Comeau ◽  
Pierre Paradis ◽  
Ernesto L Schiffrin

Background: We recently demonstrated that γδ T cells participate in the pathogenesis of hypertension. Evidence also suggests that memory T cells may develop during an initial hypertensive episode, sensitizing mice to develop hypertension to further mild hypertensive challenges. However, whether memory γδ T cells develop and play a role in hypertension remains unknown. Our objective is to determine if memory γδ T cells sensitize mice to develop hypertension in response to a mild hypertensive challenge. Methods: Ten-12-week-old C57BL/6J mice were exposed or not to a hypertensive challenge (490 ng/kg/min angiotensin II (Ang II), SC) for two weeks, followed by a two-week washout period, and then infused with a subpressor dose of Ang II (140 ng/kg/min Ang II, SC) for two weeks. Blood pressure was measured via telemetry and central, effector, and resident memory γδ T cells were profiled by flow cytometry. Results: Mice exposed to the first hypertensive challenge had a higher systolic blood pressure than the sham group at the end of the subpressor hypertensive challenge (149±6 vs. 122±3 mmHg, P <0.001). After 14-days of Ang II infusion, effector memory γδ T cells increased 5.2-fold in the mesenteric artery perivascular adipose tissue (PVAT, 1.25±0.37% vs. 0.24±0.12%, P <0.05), and 1.8-fold in the mesenteric lymph nodes (mLN, 1.49±0.03% vs. 0.82±0.15%, P <0.05) compared to sham treated mice. After repeated Ang II infusion, central memory γδ T cells decreased by 57% in the aortic PVAT (6.79±1.46% vs. 15.69±2.87%, P <0.05), and by 22% in the mLN (0.18±0.01% vs. 0.23±0.01%, P <0.05) compared to control mice. Conclusion: An initial exposure to a hypertensive stimulus sensitizes mice to develop hypertension to a subsequent subpressor hypertensive challenge and results in the development of memory γδ T cells.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Takeki Hata ◽  
Masafumi Takahashi ◽  
Masanori Kawaguchi ◽  
Yuichiro Kashima ◽  
Yuji Shiba ◽  
...  

Background: Accumulating evidence indicates that CD4 + T cells contribute to the development of collateral vesssels in ischemic tissue; however, little is known about the responsible subset of CD4 + T cells in the induction of angiogenesis. Th17 cells are recently identified as a new subset of CD4 + T cells and have been associated with the pathogenesis of certain autoimmune diseases. Th17 cells specifically secrete interleukin-17 (IL-17) and regulate various biological functions. The purpose of this study is to investigate the role of CD4 + T and Th17 cells in angiogenic response to hindlimb ischemia. Methods and Results: Unilateral hindlimb ischemia was produced in wild-type (WT: C57BL/6, 8- to 10-week-old) mice treated with or without a neutralizing antibody against CD4. Blood flow perfusion and capillary formation were assessed by using a laser Doppler perfusion imaging (LDPI) and CD31 immunostaining, respectively. Well-developed collateral vessels and capillary formation were observed in WT mice in response to hindlimb ischemia. Treatment with a neutralizing anti-CD4 antibody resulted in almost complete CD4 + T cell depletion (flow cytometry analysis, control: 45.4% vs. antibody: 1.0%) and a significant decrease in angiogenesis after the induction of hindlimb ischemia (LDPI, 21 days, control: 0.61 ± 0.1 vs. antibody: 0.41 ± 0.1, p<0.05). IL-17-deficient (IL-17 −/− ) mice also showed a significant reduction of blood flow perfusion, compared with WT mice (LDPI, day 14: 0.56 ± 0.3 vs. 0.31 ± 0.2, p<0.05; day 21: 0.66 ± 0.3 vs. 0.37 ± 0.3, p=0.05). IL-17 −/− mice had severe ischemic damage of the limb and resulted in a 25% incidence of autoamputation by day 21 (no limb loss in WT mice). Furthermore, capillary formation was also decreased significantly in IL-17 −/− mice (692.9 ± 165.6/mm 2 vs. 1223.3 ± 267.3/mm 2 , p<0.01). Conclusion : These findings demonstrate that Th17 cells, a new subset of CD4 + T cells, contribute to the angiogenic response to hindlimb ischemia and provide new insights into the mechanism by which T cells promote collateral development and angiogenesis.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Dan Ye ◽  
Yun Xu

Both resident microglia and infiltrated peripheral T cells have been proved to play important roles in the pathology of stroke. It is well accepted that activated microglia exert dual roles, including pro-inflammatory (M1) and anti-inflammatory (M2) functions. However, the mechanism regulating microglial polarization remains elusive. T cells are recruited into the ischemic area within 24 h after stroke, which also exhibit pro-inflammatory (Th1, Th17) and anti-inflammatory (Th2, Treg) functions. The interaction between microglia and T cells after stroke is barely understood, which may be served as modifiers of pathobiology in stroke. Here we described the role of T cells in the microglial polarization in mouse experimental stroke. We isolated T cells from spleens of MCAO mice at 24 h and 72 h, respectively, and then added to cultured microglia for 24 h. Our results indicated that splenic T cells obtained at 24 h after MCAO selectively promoted microglia polarize to a pro-inflammatory (M1) state, while T cells obtained at 72 h, favored microglia polarize to an anti-inflammatory (M2) state. The results of flow cytometry showed that Th1 and Th17 cells increased at 24 h after MCAO while Th2 and Treg cells increased at 72 h after MCAO. This study implicates that distinct subtypes of T cells contribute differentially to microglial polarization after stroke onset. Therefore, treatments aiming at modulating the ratios of T cells to anti-inflammatory cells have the potential to induce microglial polarize to M2 phenotype and improve the outcome of ischemic stroke.


2001 ◽  
Vol 194 (10) ◽  
pp. 1473-1483 ◽  
Author(s):  
Isabel Ferrero ◽  
Anne Wilson ◽  
Friedrich Beermann ◽  
Werner Held ◽  
H. Robson MacDonald

A particular feature of γδ T cell biology is that cells expressing T cell receptor (TCR) using specific Vγ/Vδ segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all γδ T cells express Vγ3/Vδ1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vγ3+ thymocytes. The role of γδ TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR δ chain (Vδ6.3-Dδ1-Dδ2-Jδ1-Cδ), which can pair with Vγ3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vδ6.3Tg mice DETC were present and virtually all of them express Vδ6.3. However, DETC were absent in TCR-δ−/− Vδ6.3Tg mice, despite the fact that Vδ6.3Tg γδ T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vδ6.3Tg mice, a high proportion of in-frame Vδ1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-δ (most probably Vδ1) was required for the development of Vδ6.3+ epidermal γδ T cells. Collectively our data demonstrate that TCR specificity is essential for the development of γδ T cells in the epidermis. Moreover, they show that the TCR-δ locus is not allelically excluded.


2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Kathleen W Dantzler ◽  
Lauren Parte ◽  
Prasanna Jagannathan

Sign in / Sign up

Export Citation Format

Share Document