scholarly journals Point placement of late vegetative stage nitrogen splits increase the productivity, N-use efficiency and profitability of tropical maize under decade long conservation agriculture

2022 ◽  
Vol 133 ◽  
pp. 126417
Author(s):  
Hari Sankar Nayak ◽  
C.M. Parihar ◽  
B.N. Mandal ◽  
K. Patra ◽  
S.L. Jat ◽  
...  
2021 ◽  
Vol 13 (12) ◽  
pp. 2349
Author(s):  
Jingchun Ji ◽  
Jianli Liu ◽  
Jingjing Chen ◽  
Yujie Niu ◽  
Kefan Xuan ◽  
...  

Topdressing accounts for approximately 40% of the total nitrogen (N) application of winter wheat on the Huang-Huai-Hai Plain in China. However, N use efficiency of topdressing is low due to the inadaptable topdressing method used by local farmers. To improve the N use efficiency of winter wheat, an optimization method for topdressing (THP) is proposed that uses unmanned aerial vehicle (UAV)-based remote sensing to accurately acquire the growth status and an improved model for growth potential estimation and optimization of N fertilizer amount for topdressing (NFT). The method was validated and compared with three other methods by a field experiment: the conventional local farmer’s method (TLF), a nitrogen fertilization optimization algorithm (NFOA) proposed by Raun and Lukina (TRL) and a simplification introduced by Li and Zhang (TLZ). It shows that when insufficient basal fertilizer was provided, the proposed method provided as much NFT as the TLF method, i.e., 25.05% or 11.88% more than the TRL and TLZ methods and increased the yields by 4.62% or 2.27%, respectively; and when sufficient basal fertilizer was provided, the THP method followed the TRL and TLZ methods to reduce NFT but maintained as much yield as the TLF method with a decrease of NFT by 4.20%. The results prove that THP could enhance crop production under insufficient N preceding conditions by prescribing more fertilizer and increase nitrogen use efficiency (NUE) by lowering the fertilizer amount when enough basal fertilizer is provided.


2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


Author(s):  
Juliane S. P. Costa ◽  
Rubia D. Mantai ◽  
José A. G. da Silva ◽  
Osmar B. Scremin ◽  
Emilio G. Arenhardt ◽  
...  

ABSTRACT Single or split nitrogen (N) supply can maximize the expression of wheat yield indicators. The objective of the study was to evaluate the greater N use efficiency on wheat yield indicators by the single and split N supply under favorable and unfavorable year conditions to the crop in succession system of high and reduced residual N release. The study was conducted in 2014 and 2015, in a randomized complete block design with four replicates in a 4 x 3 factorial, for N-fertilizer doses (0, 30, 60, 120 kg ha-1) and supply forms [full dose (100%) in the phenological stage V3 (third expanded leaf); split dose (70 and 30%) in the phenological stages V3/V6 (third and sixth expanded leaves, respectively) and; split dose (70 and 30%) in the phenological stages V3/R1 (third expanded leaf and early grain filling)], respectively, in soybean/wheat and maize/wheat cultivation systems. The highest N use efficiency for wheat yield was obtained with the single dose supply in favorable year of temperature and rainfall and with the split dose in the V3/V6 stages in unfavorable year, regardless of the succession system of high and reduced residual N release.


2002 ◽  
Vol 2 (1) ◽  
pp. 4-8
Author(s):  
Mahmood-ul-Hassan . ◽  
Taj Muhammad . ◽  
Saeed Ahmad . ◽  
Muhammad Iqbal . ◽  
Abdul Karim . ◽  
...  

2006 ◽  
Vol 97 (2-3) ◽  
pp. 227-237 ◽  
Author(s):  
Tadahiko Mae ◽  
Ayako Inaba ◽  
Yoshihiro Kaneta ◽  
Satoshi Masaki ◽  
Mizuo Sasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document