growth monitoring
Recently Published Documents


TOTAL DOCUMENTS

906
(FIVE YEARS 326)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 14 (2) ◽  
pp. 331
Author(s):  
Xuewei Zhang ◽  
Kefei Zhang ◽  
Yaqin Sun ◽  
Yindi Zhao ◽  
Huifu Zhuang ◽  
...  

The leaf area index (LAI) is of great significance for crop growth monitoring. Recently, unmanned aerial systems (UASs) have experienced rapid development and can provide critical data support for crop LAI monitoring. This study investigates the effects of combining spectral and texture features extracted from UAS multispectral imagery on maize LAI estimation. Multispectral images and in situ maize LAI were collected from test sites in Tongshan, Xuzhou, Jiangsu Province, China. The spectral and texture features of UAS multispectral remote sensing images are extracted using the vegetation indices (VIs) and the gray-level co-occurrence matrix (GLCM), respectively. Normalized texture indices (NDTIs), ratio texture indices (RTIs), and difference texture indices (DTIs) are calculated using two GLCM-based textures to express the influence of two different texture features on LAI monitoring at the same time. The remote sensing features are prescreened through correlation analysis. Different data dimensionality reduction or feature selection methods, including stepwise selection (ST), principal component analysis (PCA), and ST combined with PCA (ST_PCA), are coupled with support vector regression (SVR), random forest (RF), and multiple linear regression (MLR) to build the maize LAI estimation models. The results reveal that ST_PCA coupled with SVR has better performance, in terms of the VIs + DTIs (R2 = 0.876, RMSE = 0.239) and VIs + NDTIs (R2 = 0.877, RMSE = 0.236). This study introduces the potential of different texture indices for maize LAI monitoring and demonstrates the promising solution of using ST_PCA to realize the combining of spectral and texture features for improving the estimation accuracy of maize LAI.


Author(s):  
Uoc Quang Ngo ◽  
Duong Tri Ngo ◽  
Hoc Thai Nguyen ◽  
Thanh Dang Bui

Increasingly <span>emerging technologies in agriculture such as computer vision, artificial intelligence technology, not only make it possible to increase production. To minimize the negative impact on climate and the environment but also to conserve resources. A key task of these technologies is to monitor the growth of plants online with a high accuracy rate and in non-destructive manners. It is known that leaf area (LA) is one of the most important growth indexes in plant growth monitoring system. Unfortunately, to estimate the LA in natural outdoor scenes (the presence of occlusion or overlap area) with a high accuracy rate is not easy and it still remains a big challenge in eco-physiological studies. In this paper, two accurate and non-destructive approaches for estimating the LA were proposed with top-view and side-view images, respectively. The proposed approaches successfully extract the skeleton of cucumber plants in red, green, and blue (RGB) images and estimate the LA of cucumber plants with high precision. The results were validated by comparing with manual measurements. The experimental results of our proposed algorithms achieve 97.64% accuracy in leaf segmentation, and the relative error in LA estimation varies from 3.76% to 13.00%, which could meet the requirements of plant growth monitoring </span>systems.


2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Yiru Ma ◽  
Qiang Zhang ◽  
Xiang Yi ◽  
Lulu Ma ◽  
Lifu Zhang ◽  
...  

Unmanned aerial vehicles (UAV) has been increasingly applied to crop growth monitoring due to their advantages, such as their rapid and repetitive capture ability, high resolution, and low cost. LAI is an important parameter for evaluating crop canopy structure and growth without damage. Accurate monitoring of cotton LAI has guiding significance for nutritional diagnosis and the accurate fertilization of cotton. This study aimed to obtain hyperspectral images of the cotton canopy using a UAV carrying a hyperspectral sensor and to extract effective information to achieve cotton LAI monitoring. In this study, cotton field experiments with different nitrogen application levels and canopy spectral images of cotton at different growth stages were obtained using a UAV carrying hyperspectral sensors. Hyperspectral reflectance can directly reflect the characteristics of vegetation, and vegetation indices (VIs) can quantitatively describe the growth status of plants through the difference between vegetation in different band ranges and soil backgrounds. In this study, canopy spectral reflectance was extracted in order to reduce noise interference, separate overlapping samples, and highlight spectral features to perform spectral transformation; characteristic band screening was carried out; and VIs were constructed using a correlation coefficient matrix. Combined with canopy spectral reflectance and VIs, multiple stepwise regression (MSR) and extreme learning machine (ELM) were used to construct an LAI monitoring model of cotton during the whole growth period. The results show that, after spectral noise reduction, the bands screened by the successive projections algorithm (SPA) are too concentrated, while the sensitive bands screened by the shuffled frog leaping algorithm (SFLA) are evenly distributed. Secondly, the calculation of VIs after spectral noise reduction can improve the correlation between vegetation indices and LAI. The DVI (540,525) correlation was the largest after standard normal variable transformation (SNV) pretreatment, with a correlation coefficient of −0.7591. Thirdly, cotton LAI monitoring can be realized only based on spectral reflectance or VIs, and the ELM model constructed by calculating vegetation indices after SNV transformation had the best effect, with verification set R2 = 0.7408, RMSE = 1.5231, and rRMSE = 24.33%, Lastly, the ELM model based on SNV-SFLA-SNV-VIs had the best performance, with validation set R2 = 0.9066, RMSE = 0.9590, and rRMSE = 15.72%. The study results show that the UAV equipped with a hyperspectral sensor has broad prospects in the detection of crop growth index, and it can provide a theoretical basis for precise cotton field management and variable fertilization.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 217
Author(s):  
Parthasarathy Velusamy ◽  
Santhosh Rajendran ◽  
Rakesh Kumar Mahendran ◽  
Salman Naseer ◽  
Muhammad Shafiq ◽  
...  

Agriculture is the primary source of income in developing countries like India. Agriculture accounts for 17 percent of India’s total GDP, with almost 60 percent of the people directly or indirectly employed. While researchers and planters focus on a variety of elements to boost productivity, crop loss due to disease is one of the most serious issues they confront. Crop growth monitoring and early detection of pest infestations are still a problem. With the expansion of cultivation to wider fields, manual intervention to monitor and diagnose insect and pest infestations is becoming increasingly difficult. Failure to apply on time fertilizers and pesticides results in more crop loss and so lower output. Farmers are putting in greater effort to conserve crops, but they are failing most of the time because they are unable to adequately monitor the crops when they are infected by pests and insects. Pest infestation is also difficult to predict because it is not evenly distributed. In the recent past, modern equipment, tools, and approaches have been used to replace manual involvement. Unmanned aerial vehicles serve a critical role in crop disease surveillance and early detection in this setting. This research attempts to give a review of the most successful techniques to have precision-based crop monitoring and pest management in agriculture fields utilizing unmanned aerial vehicles (UAVs) or unmanned aircraft. The researchers’ reports on the various types of UAVs and their applications to early detection of agricultural diseases are rigorously assessed and compared. This paper also discusses the deployment of aerial, satellite, and other remote sensing technologies for disease detection, as well as their Quality of Service (QoS).


2021 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Quanjun Jiao ◽  
Qi Sun ◽  
Bing Zhang ◽  
Wenjiang Huang ◽  
Huichun Ye ◽  
...  

Canopy chlorophyll content (CCC) is an important indicator for crop-growth monitoring and crop productivity estimation. The hybrid method, involving the PROSAIL radiative transfer model and machine learning algorithms, has been widely applied for crop CCC retrieval. However, PROSAIL’s homogeneous canopy hypothesis limits the ability to use the PROSAIL-based CCC estimation across different crops with a row structure. In addition to leaf area index (LAI), average leaf angle (ALA) is the most important canopy structure factor in the PROSAIL model. Under the same LAI, adjustment of the ALA can make a PROSAIL simulation obtain the same canopy gap as the heterogeneous canopy at a specific observation angle. Therefore, parameterization of an adjusted ALA (ALAadj) is an optimal choice to make the PROSAIL model suitable for specific row-planted crops. This paper attempted to improve PROSAIL-based CCC retrieval for different crops, using a random forest algorithm, by introducing the prior knowledge of crop-specific ALAadj. Based on the field reflectance spectrum at nadir, leaf area index, and leaf chlorophyll content, parameterization of the ALAadj in the PROSAIL model for wheat and soybean was carried out. An algorithm integrating the random forest and PROSAIL simulations with prior ALAadj information was developed for wheat and soybean CCC retrieval. Ground-measured CCC measurements were used to validate the CCC retrieved from canopy spectra. The results showed that the ALAadj values (62 degrees for wheat; 45 degrees for soybean) that were parameterized for the PROSAIL model demonstrated good discrimination between the two crops. The proposed algorithm improved the CCC retrieval accuracy for wheat and soybean, regardless of whether continuous visible to near-infrared spectra with 50 bands (RMSE from 39.9 to 32.9 μg cm−2; R2 from 0.67 to 0.76) or discrete spectra with 13 bands (RMSE from 43.9 to 33.7 μg cm−2; R2 from 0.63 to 0.74) and nine bands (RMSE from 45.1 to 37.0 μg cm−2; R2 from 0.61 to 0.71) were used. The proposed hybrid algorithm, based on PROSAIL simulations with ALAadj, has the potential for satellite-based CCC estimation across different crop types, and it also has a good reference value for the retrieval of other crop parameters.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Jiawei Guo ◽  
Yu Jin ◽  
Huichun Ye ◽  
Wenjiang Huang ◽  
Jinling Zhao ◽  
...  

Areca yellow leaf disease is a major attacker of the planting and production of arecanut. The continuous expansion of arecanut (Areca catechu L.) planting areas in Hainan has placed a great need to strengthen the monitoring of this disease. At present, there is little research on the monitoring of areca yellow leaf disease. PlanetScope imagery can achieve daily global coverage at a high spatial resolution (3 m) and is thus suitable for the high-precision monitoring of plant pest and disease. In this paper, PlanetScope images were employed to extract spectral features commonly used in disease, pest and vegetation growth monitoring for primary models. In this paper, 13 spectral features commonly used in vegetation growth and pest monitoring were selected to form the initial feature space, followed by the implementation of the Correlation Analysis (CA) and independent t-testing to optimize the feature space. Then, the Random Forest (RF), Backward Propagation Neural Network (BPNN) and AdaBoost algorithms based on feature space optimization to construct double-classification (healthy, diseased) monitoring models for the areca yellow leaf disease. The results indicated that the green, blue and red bands, and plant senescence reflectance index (PSRI) and enhanced vegetation index (EVI) exhibited highly significant differences and strong correlations with healthy and diseased samples. The RF model exhibits the highest overall recognition accuracy for areca yellow leaf disease (88.24%), 2.95% and 20.59% higher than the BPNN and AdaBoost models, respectively. The commission and omission errors were lowest with the RF model for both healthy and diseased samples. This model also exhibited the highest Kappa coefficient at 0.765. Our results exhibit the feasible application of PlanetScope imagery for the regional large-scale monitoring of areca yellow leaf disease, with the RF method identified as the most suitable for this task. Our study provides a reference for the monitoring, a rapid assessment of the area affected and the management planning of the disease in the agricultural and forestry industries.


2021 ◽  
Vol 13 (24) ◽  
pp. 5060
Author(s):  
Xianyu Guo ◽  
Junjun Yin ◽  
Kun Li ◽  
Jian Yang

In recent years, the compact polarimetric (CP) synthetic aperture radar (SAR) has become a hotspot of SAR Earth observation. Meanwhile, CP SAR provides both relatively rich polarization information and large swath-width for rice mapping. Fine classification of rice paddy plays an important role in growth monitoring, pest prevention and yield estimation of rice. In this study, the multi-temporal CP SAR data were firstly simulated by fully polarimetric RADARSAT-2 data, and 22 CP parameters from each of the six temporal CP SAR data were extracted. Then we built a rice height-sensitive index (RHSI). Furthermore, a decision tree (DT) method was established by using the optimal CP parameters based on RHSI. Finally, the classification results of rice paddy based on DT and support vector machine (SVM) methods were compared. Results showed that the RHSI-DT method could obtain better results, with an overall accuracy of 97.94% and a kappa coefficient of 0.973, which was 2% higher and 0.03 larger than those of the SVM method. Besides, we found that the surface scattering of m-χ decomposition (m-χ_s (0627)) and ΔShannon entropy intensity Hi(Hi (1015)-Hi (0627)) were highly effective parameters to distinguish paddies of transplanting hybrid rice (T-H) and direct-sown japonica rice (D-J).


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1262
Author(s):  
Aiwu Zhang ◽  
Shaoxing Hu ◽  
Xizhen Zhang ◽  
Taipei Zhang ◽  
Mengnan Li ◽  
...  

Monitoring grassland vegetation growth is of vital importance to scientific grazing and grassland management. People expect to be able to use a portable device, like a mobile phone, to monitor grassland vegetation growth at any time. In this paper, we propose a handheld grassland vegetation monitoring system to achieve the goal of monitoring grassland vegetation growth. The system includes two parts: the hardware unit is a hand-held multispectral imaging tool named ASQ-Discover based on a smartphone, which has six bands (wavelengths)—including three visible bands (450 nm, 550 nm, 650 nm), a red-edge band (750 nm), and two near-infrared bands (850 nm, 960 nm). The imagery data of each band has a size of 5120 × 3840 pixels with 8-bit depth. The software unit improves image quality through vignetting removal, radiometric calibration, and misalignment correction and estimates and analyzes spectral traits of grassland vegetation (Fresh Grass Ratio (FGR), NDVI, NDRE, BNDVI, GNDVI, OSAVI and TGI) that are indicators of vegetation growth in grassland. We introduce the hardware and software unit in detail, and we also experiment in five pastures located in Haiyan County, Qinghai Province. Our experimental results show that the handheld grassland vegetation growth monitoring system has the potential to revolutionize the grassland monitoring that operators can conduct when using a hand-held tool to achieve the tasks of grassland vegetation growth monitoring.


2021 ◽  
Author(s):  
Charith Jayasekara ◽  
Sajani Banneka ◽  
Gihan Pasindu ◽  
Yukthi Udawaththa ◽  
Sasini Wellalage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document