Optical and thermo-mechanical properties of fine-grained transparent yttria ceramics fabricated by hot-press sintering for infrared window applications

2018 ◽  
Vol 38 (11) ◽  
pp. 4064-4069 ◽  
Author(s):  
Lin Gan ◽  
Young-Jo Park ◽  
Lin-Lin Zhu ◽  
Ha-Neul Kim ◽  
Jae-Woong Ko ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2013 ◽  
Vol 589-590 ◽  
pp. 572-577 ◽  
Author(s):  
Hua He Liu ◽  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Ya Cong Chai

Al2O3-MgO, Al2O3-Y2O3 and Al2O3-MgO-Y2O3 composite ceramics were fabricated respectively by hot-press sintering technique. With the analysis of the mechanical properties and microstructure, it was found that single additive MgO could be more favorable to the grains’ refinement and densification than Y2O3; the composite additive including both MgO and Y2O3 was better than single additive MgO or Y2O3, because their interactions could improve the mechanical properties of the Al2O3 ceramics; The sintering temperature could be reduced by adding the suitable amount of composite additives.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2015 ◽  
Vol 1095 ◽  
pp. 48-52
Author(s):  
Chun Yan Tian ◽  
Hai Jiang

Silicon nitride nanoceramics were prepared by hot press sintering amorphous Si3N4and α-Si3N4nanopowders. The microstructures as well as the effect of starting powders size on the mechanical properties and thermal fatigue properties were investigated. The results show that microstructure of sintered materials consists of spherical grains with approximate size of 100 nm. The mechanical properties and thermal fatigue resistance vary with the addition of α–Si3N4powders. The maximum flexural strength and fracture toughness are obtained when the α–Si3N4powders amount is 40wt.%. And the Si3N4nanoceramic added 40wt.% α–Si3N4powders has the best capability to suppress crack propagation and the highest critical temperature difference.


2018 ◽  
Vol 7 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Bin Li ◽  
Guangqi Li ◽  
Haiyang Chen ◽  
Junhong Chen ◽  
Xinmei Hou ◽  
...  

2020 ◽  
Vol 46 (7) ◽  
pp. 9575-9581 ◽  
Author(s):  
Sung Min So ◽  
Woo Hyuk Choi ◽  
Kyoung Hun Kim ◽  
Joo Seok Park ◽  
Min Suk Kim ◽  
...  

2008 ◽  
Vol 368-372 ◽  
pp. 1764-1766 ◽  
Author(s):  
Yu Jin Wang ◽  
Lei Chen ◽  
Tai Quan Zhang ◽  
Yu Zhou

The ZrC-W composites with iron as sintering additive were fabricated by hot-press sintering. The densification, microstructure and mechanical properties of the composites were investigated. The incorporation of Fe beneficially promotes the densification of ZrC-W composites. The relative density of the composite sintered at 1900°C can attain 95.3%. W2C phase is also found in the ZrC-W composite sintered at 1700°C. The content of W2C decreases with the increase of sintering temperature. However, W2C phase is not identified in the composite sintered at 1900°C. The flexural strength and fracture toughness of the composites are strongly dependent on sintering temperature. The flexural strength and fracture toughness of ZrC-W composite sintered at optimized temperature of 1800°C are 438 MPa and 3.99 MPa·m1/2, respectively.


2007 ◽  
Vol 336-338 ◽  
pp. 2363-2365
Author(s):  
You Feng Zhang ◽  
Yu Zhou ◽  
De Chang Jia ◽  
Qing Chang Meng

Effects of different sintering methods such as pressureless sintering and hot press sintering on relative density and microstructure of the Al2O3p/LiTaO3 (ALT) composite ceramics were investigated to obtain a preferable sintering process. Relative densities of all ALT composites are below 90% when sintered with the cold isostatical pressing followed by pressureless sintering at temperatures of 1250 to 1350°C. The relative densities and microstructure of ALT composite ceramics with the hot press sintering process in a N2 atmosphere at 1150 and 1300°C were investigated. The relative density of ALT composite hot pressed at 1150°C is only 77%, and almost theoretical density at 1300°C. This indicates that sintering pressure plays an important role in the densification of ALT composite ceramics in temperature range of 1150 to 1350°C. Investigation on morphologies of the composites shows that the Al2O3 particles distributed along grain boundaries of LiTaO3, which leads to a fine-grained microstructure in the ALT composite ceramics


Sign in / Sign up

Export Citation Format

Share Document