scholarly journals Essentially coercive forms and asymptotically compact semigroups

2020 ◽  
Vol 491 (2) ◽  
pp. 124318 ◽  
Author(s):  
W. Arendt ◽  
I. Chalendar
Keyword(s):  
1989 ◽  
Vol 68 (3) ◽  
pp. 257-270 ◽  
Author(s):  
H. Furstenberg ◽  
Y. Katznelson

2003 ◽  
Vol 4 (1) ◽  
pp. 133
Author(s):  
Ralph D. Kopperman ◽  
Desmond Robbie

<p>Skew compact spaces are the best behaving generalization of compact Hausdorff spaces to non-Hausdorff spaces. They are those (X ; τ ) such that there is another topology τ* on X for which τ V τ* is compact and (X; τ ; τ*) is pairwise Hausdorff; under these conditions, τ uniquely determines τ *, and (X; τ*) is also skew compact. Much of the theory of compact T<sub>2</sub> semigroups extends to this wider class. We show:</p> <p>A continuous skew compact semigroup is a semigroup with skew compact topology τ, such that the semigroup operation is continuous τ<sup>2</sup>→ τ. Each of these contains a unique minimal ideal which is an upper set with respect to the specialization order.</p> <p>A skew compact semigroup which is a continuous semigroup with respect to both topologies is called a de Groot semigroup. Given one of these, we show:</p> <p>It is a compact Hausdorff group if either the operation is cancellative, or there is a unique idempotent and S<sup>2</sup> = S.</p> <p>Its topology arises from its subinvariant quasimetrics.</p> <p>Each *-closed ideal ≠ S is contained in a proper open ideal.</p>


1969 ◽  
Vol 9 (1-2) ◽  
pp. 167-175
Author(s):  
C. E. Clark

The problem of determining the class of homomorphic images of a given class of topological semigroups seems to have received little attention in the literature. In [4] Cohen and Krule determined the homomorphic images of a semigroup with zero on an interval. Anderson and Hunter in [1] proved several theorems in this direction. In general, the problem seems to be rather difficult. However, the difficulty is lessened somewhat if all of the homomorphisms of the semigroups in question must be monotone. Phillips, [7], showed that every homomorphism of a standard thread is monotone and hence every homomorphic image of a standard thread is either a standard thread or a point. In this paper a larger class of topological semigroups which admit only monotone homomorphisms is given. These results are used to determine the topological nature of the homomorphic images of certain classes of topological semigroups. These include products of standard threads with min threads, certain semilattices on a two-cell, and compact connected lattices in the plane.


1987 ◽  
Vol 30 (3) ◽  
pp. 273-281 ◽  
Author(s):  
James C. S. Wong

AbstractThis is a sequel to the author's paper "On the semigroup of probability measures of a locally compact semigroup." We continue to investigate the relationship between amenability of spaces of functions and functionals associated with a locally compact semigroups S and its convolution semigroup MO(S) of probability measures and fixed point properties of actions of S and MO(S) on compact convex sets.


1978 ◽  
Vol 26 (1) ◽  
pp. 126-128
Author(s):  
Kermit Sigmon

AbstractThe compact semigroups in which each topologically simple subsemigroup is simple are characterized as those in which no subgroup sontains an element of infinite order. It is also shown that a locally compact toplogically simple subsemigroup of a compact semigroup must be simple. The note closes with an open problem.Subject classification (Amer. Math. Soc. (MOS) 1970): primary 22 A 15; secondary 20 M 10.


1975 ◽  
Vol 12 (1) ◽  
pp. 149-153 ◽  
Author(s):  
H.L. Chow

Let S be a compact semigroup and P(S) the set of probability measures on S. Suppose P(S) has zero θ and define a measure μ ε P(S) nilpotent if μn → θ. It is shown that any measure with support containing that of θ is nilpotent, and the set of nilpotent measures is convex and dense in P(S). A measure μ is called mean-nilpotent if (μ + μ2 + … + μn)/n → θ, and can be characterized in terms of its support.


Sign in / Sign up

Export Citation Format

Share Document