Effects of lutein particle size in embedding emulsions on encapsulation efficiency, storage stability, and dissolution rate of microencapsules through spray drying

LWT ◽  
2021 ◽  
pp. 111430
Author(s):  
Xiao Wang ◽  
Zhuang Ding ◽  
Yanna Zhao ◽  
Sangeeta Prakash ◽  
Wenlai Liu ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2061
Author(s):  
Jeong-Soo Kim ◽  
Heejun Park ◽  
Eun-Sol Ha ◽  
Kyu-Tae Kang ◽  
Min-Soo Kim ◽  
...  

In this study, supercritical fluid-assisted spray-drying (SA-SD) was applied to achieve the micronization of fenofibrate particles possessing surface-active additives, such as d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), sucrose mono palmitate (Sucroester 15), and polyoxyethylene 52 stearate (Myrj 52), to improve the pharmacokinetic and pharmacodynamic properties of fenofibrate. For comparison, the same formulation was prepared using a spray-drying (SD) process, and then both methods were compared. The SA-SD process resulted in a significantly smaller mean particle size (approximately 2 μm) compared to that of unprocessed fenofibrate (approximately 20 μm) and SD-processed particles (approximately 40 μm). There was no significant difference in the effect on the particle size reduction among the selected surface-active additives. The microcomposite particles prepared with surface-active additives using SA-SD exhibited remarkable enhancement in their dissolution rate due to the synergistic effect of comparably moderate wettability improvement and significant particle size reduction. In contrast, the SD samples with the surface-active additives exhibited a decrease in dissolution rate compared to that of the unprocessed fenofibrate due to the absence of particle size reduction, although wettability was greatly improved. The results of zeta potential and XPS analyses indicated that the surface-active additive coverage on the surface layer of the SD-processed particles with a better wettability was higher than that of the SA-SD-processed composite particles. Additionally, after rapid depletion of hydrophilic additives that were excessively distributed on the surfaces of SD-processed particles, the creation of a surface layer rich in poorly water-soluble fenofibrate resulted in a decrease in the dissolution rate. In contrast, the surface-active molecules were dispersed homogeneously throughout the particle matrix in the SA-SD-processed microparticles. Furthermore, improved pharmacokinetic and pharmacodynamic characteristics were observed for the SA-SD-processed fenofibrate microparticles compared to those for the SD-processed fenofibrate particles. Therefore, the SA-SD process incorporating surface-active additives can efficiently micronize poorly water-soluble drugs and optimize their physicochemical and biopharmaceutical characteristics.


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Enrique Colorado Olivares ◽  
José Luis Olivares Romero ◽  
Felipe Barrera Méndez

Abstract. The use of biodegradable polymers to encapsulate fertilizers is one of the main tools that help to prevent them to get carried away by the irrigation water, since phosphate based fertilizers are highly soluble. Indeed, this technology might improve productivity and reduce both costs and environmental pollution. In this work potassium phosphate was encapsulated in chitosan, which is one of the most abundant natural and biodegradable polymers widely applied in agriculture for plant defense and yield increase, applying the encapsulation method of spray drying to provide a high encapsulation efficiency rates. A 2k factorial design was implemented to evaluate the effect of the different operational parameters of the spray dryer on the particle size, measured by scan electronic microscopy, then it was obtained the average particle sizes to be between 1.08 to 2.04 µm. The release of KH2PO4 from chitosan spheres of different sizes was performed in Milli-Q water and was measured using the conductometry technique. The experiments revealed that the parameter with the greatest effect was the feed rate, and that the system with the smallest particle size obtained (1.08 µm) showed a slower release without losing an important amount of encapsulation efficiency. Resumen. La encapsulación de fertilizantes en polímeros biodegradables es una de las principales herramientas empleadas que ayudan a prevenir que estos sean arrastrados por el agua de riego debido a que los fertilizantes base fosfato son extremadamente solubles. Estas partículas podrían mejorar la productividad y al mismo tiempo reducir costos y contaminación ambiental. En este trabajo se encapsuló fosfato de potasio en quitosano, uno de los polímeros naturales bioedegradables más abundantes ampliamente aplicados en agricultura para defensa e incremento de producción, aplicando el método de secado por aspersión para obtener altas eficiencias de encapsulación. Se implementó un diseño 2k para evaluar el efecto de los diferentes parámetros de operación del secador por aspersión sobre el tamaño de partícula, medido mediante microscopía electrónica de barrido, después se obtuvo que el tamaño promedio de partícula se encontró entre 1.08 to 2.04µm. La liberación del KH2PO4 de las esferas de quitosano de diferentes tamaños se realizó en agua Milli-Q y fue medida usando la técnica de conductimetría. Los experimentos revelaron que el parámetro con el mayor efecto fue el flujo de alimentación, y que el sistema con el menor tamaño de partícula obtenido (1.08 µm) mostró una liberación más lenta sin perder una importante cantidad de eficiencia de encapsulación. 


2007 ◽  
Vol 25 (6) ◽  
pp. 1081-1089 ◽  
Author(s):  
Seid Mahdi Jafari ◽  
Yinghe He ◽  
Bhesh Bhandari

Author(s):  
Eva Mayasari ◽  
Satrijo Saloko ◽  
Oke Anandika Lestari ◽  
Maria Ulfa

Free glutamic acid is a flavor enhancer compound that provided umami taste. San-sakng (Albertisia papuana Becc.) leaf has been used as a seasoning in the Dayaks tribe, West Kalimantan, Indonesia. The aim of this study was evaluated the effect of different drying inlet air temperature on physico-chemical of the spray dried san-sakng leaf. San-sakng leaf powders was produced using spray drying and maltodextrin as raw material. Completely randomized design was used with one factor, namely drying inlet air temperature on the spray drying process (130°C, 140°C, and 150°C). The results showed that moisture, solubility, bulk density, particle size, and encapsulation efficiency on the San-sakng leaf powders presented significantly affected by the drying inlet air temperature. Increasing inlet air temperature led to reduced moisture, bulk density, and particle size, whereas enhancing the solubility and encapsulation efficiency.


Author(s):  
Khanh Nguyễn

Rutin is a flavonol glycoside, which has been reported to have antioxidant, anti-inflammatory,  antithrombotic, antineoplastic, inhibit ultraviolet radiation-induced cutaneous oxidative stress  and inflammation. The oral bioavailability of Rutin is very low. Phyto-phospholipid complex (phytosomes) is helpful in enhancing oral bioavailability and transdermal permeation of Rutin. Rutin phytosomes were prepared by using phosphatidylcholine (PC) and cholesterol by solvent evaporation and spray drying method. The physicochemical properties of phytosomes were  evaluated using particle size analyses, polydispersity index, Zeta potential, encapsulation efficiency, furrier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Phytosomes with the rutin: PC: cholesterol molar ratios of 1:1:0.2 were prepared by spray drying showed the lowest particle size (266.4 nm), the highest encapsulation efficiency (95.61%). Results of the FT-IR, DSC and XRD studies confirmed the  phyto-phospholipid complex formation.


2018 ◽  
Vol 2 (2) ◽  
pp. 89
Author(s):  
Nina Hartini ◽  
Syarifatur Richana ◽  
Bayu Triwibowo ◽  
Nur Qudus ◽  
Ratna Dewi Kusumaningtyas

Indonesia sebagai negara agraris, sebagian penduduk Indonesia bermata pencaharian di bidang pertanian. Pada umumnya, masyarakat menggunakan pestisida untuk membasmi hama. Karena tingginya penggunaan pestisida maka WHO (2016) menyatakan kasus keracunan pestisida mencapai 193.000 jiwa selama tahun 2012. Untuk mengatasi permasalahan tersebut, biopestisida menjadi bahan alternatif pengganti pestisida karena lebih aman dan ramah lingkungan. Salah satu bahan alam yang berpotensi sebagai biopestisida adalah kulit durian. Rata-rata produksi durian setiap tahunnya 780.032,8 ton/tahun. Limbah kulit durian memiliki berat 60-75% dengan kandungan senyawa metabolit sekunder relatif tinggi belum termanfaatkan secara maksimal. Senyawa tersebut dimanfaatkan sebagai antioksidan dan antimikroba dalam proses pembasmi hama. Biopestisida yang dikembangkan dengan metode sokletasi menghasilkan ekstrak berbentuk cair. Namun, hasil tersebut kurang efektif dan mudah teroksidasi sehingga menurunkan keefektifitasan kadar bahan aktif. Mengatasi masalah tersebut maka perlu dikembangkan inovasi dengan proses enkapsulasi. Artikel ini me-review pengembangan metode enkapsulasi. Metode yang dapat digunakan untuk enkapsulasi biopestisida yaitu ekstrusi, spray chilling dan spray drying. Metode spray drying lebih berpotensi mengenkapsulasi biopestisida dari kulit durian karena memiliki efisiensi enkapsulan lebih tinggi dan hampir mendekati 100%. Distribusi ukuran partikel yang dihasilkan tergolong nanoenkapsulan.Indonesia as an agrarian country, most of Indonesia's people work in agriculture. In general, people use pesticides to eradicate pests. Due to the high use of pesticides, WHO (2016) stated the case of pesticide poisoning reach 193,000 in 2012. To solve the problem, Biopesticide as an alternative of synthetic pesticides because it’s more safe and environmentally friendly. One of the natural ingredients that potentially as biopesticide is durian peel. The average durian production per year is 780,032.8 tons/year. Durian peels waste weighs 60-75% with a relatively high contains  of secondary metabolite  not yet fully utilized. It’s  used as antioxidants and antimicrobials in pesticides. Biopesticide is developed by socletation method. However, the results are less effective because it’s easily oxidized, so reduce the flavonoid efectiveness. To solve this problem, to be developed innovation with encapsulation process. This article reviews the development of encapsulation methods. Methods that can be used for biopesticide encapsulation are extrusion, spray chilling and spray drying. Spray drying method is more likely to encapsulate biopesticides because it has higher encapsulation efficiency and is close to 100%. The resulting particle size distribution is classified as nanocapsul.


Author(s):  
Jasmine Kaur ◽  
Palak Bawa ◽  
Sarvi Yadav Rajesh ◽  
Parth Sharma ◽  
Deepak Ghai ◽  
...  

  Objective: The objective of this study was to formulate curcumin nanosuspension (NS) using Box-Behnken design (BBD) and solvent-antisolvent technique to overcome the challenges related to its poor dissolution rate.Methods: Sodium lauryl sulfate (SLS) and poly vinyl pyrrolidone K-60 (PVPK-60) have been used as a surfactant and polymer, respectively, to stabilize the NS. Ethanol was used as solvent to dissolve curcumin and water was used as antisolvent. The study revealed that SLS to curcumin ratio, PVPK-60 to curcumin ratio, solvent to antisolvent ratio and speed of mixing were the critical parameters that affected particle size and zeta potential of the formulation. Hence, based on Box- BBD, 25 formulations were prepared by varying these critical parameters. The optimized batch of CRM NS was further solidified using spray drying as well as rotary evaporation techniques to have a better insight for selection of solidification process in terms of retention of particle size, charge, flow, dissolution, and stability.Results: About 39.47 folds decrease in particle size of raw CRM was observed after conversion into NS. Further, about 53.57 and 45.45 folds decrease in particle size was observed after spray drying and rotary evaporation. Both the dried nanoparticles have shown comparatively higher solubility, powder flow, and dissolution rate as that of raw CRM. Powder X-ray diffraction study revealed the formation of amorphous nanoparticles. Accelerated stability study revealed that nanoparticles dried by spray drying were able to retain the properties such as particle size, flow, and dissolution rate as compared to rotary evaporated powders.Conclusion: It can be concluded that spray drying technique could offer many advantages while loading CRM nanoparticles into tablets for their oral administration.


2020 ◽  
Vol 10 (1) ◽  
pp. 14-23
Author(s):  
Ahmed Gardouh ◽  
Sherif Shaker ◽  
Zainab Z. Ali ◽  
Mamdouh Ghorab

Background: Most liposomes problems are due to stability and consistency. Proliposomes is one of the solutions to overcome the disadvantage of liposomes. They are available in dry powder form, it is easy to distribute, transfer, measure and store. Objective: The aim of the present study was to find a novel method of preparing Silymarin proliposomes and study the effect of cholesterol concentrations and surfactant types on the physicochemical properties of silymarin proliposomes and its in-vitro release. Methods: Silymarin proliposomes were prepared by combining two simple methods ethanol injection method for liposomes preparation followed by the spray drying method to get a dry powder. The physicochemical properties including particle size, TEM, SEM, FTIR, encapsulation efficiency and dissolution studies were studied. Results: The particle size of silymarin liposomes were below 552.36 ± 17.63 nm but after reconstitution of silymarin proliposomes, the particle size was in the micro range due to the influence of the spray drying process. Cholesterol concentration was ranged from 50 to 150 mg per formula. Increasing Cholesterol concentration caused a significant increase in liposomes particle size and reduction in encapsulation efficiency. Three non-ionic surfactants were used to prepare silymarin proliposomes Tween 80, Cremophor RH 40 and Poloxamer 407. Formula F1 prepared with Phosal® 53 MCT (300 mg), Tween 80 (50 mg), cholesterol (50 mg) and Silymarin (140 mg) showed the smallest particle size (2066 ± 164.87 nm) upon reconstitution in water, highest encapsulation efficiency (89.51 ± 0.43%), and fastest in vitro release compared to other formulas. Cytotoxicity of Silymarin, formula F1 and formula F1/blank was assessed using an MTT assay on MCF-7, HepG2 and HBF-4 cells. The cytotoxic effect of silymarin was enhanced by loading it on proliposomes. Conclusion: Silymarin was successfully formulated into proliposomes combining ethanol injection and spray drying methods. The cytotoxicity of silymarin was improved when loaded on proliposomes owing to the formula.


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


Sign in / Sign up

Export Citation Format

Share Document