Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum–AZ31B magnesium alloys

2012 ◽  
Vol 40 ◽  
pp. 453-460 ◽  
Author(s):  
S. Malarvizhi ◽  
V. Balasubramanian
2014 ◽  
Vol 984-985 ◽  
pp. 586-591 ◽  
Author(s):  
R. Ashok Kumar ◽  
M.R. Thansekhar

— For fabricating light weight structures, it requires high strength-to weight ratio. AA6061 aluminium alloy is widely used in the fabrication of light weight structures. A356 aluminium alloy has wide spread application in aerospace industries. Friction stir welding is solid state joining process which is conducting for joining similar and dissimilar materials. The friction stir welding parameters play an important role for deciding the strength of welded joints. In this investigation, A356 and AA6061 alloys were friction stir welded by varying triangular, square, hexagonal pin profiles of tool keeping the remaining parameters same and AA6061 alloys were friction stir welded by varying tool shoulder diameter as 12mm,15mm,18mm without changing other parameters. Tensile properties of each joint have been analyzed microscopically. From the experimental results, it is observed that hexagonal pin profiled tool and 15mm shoulder diameter tool provides higher tensile properties when compared to other tools.


2016 ◽  
Vol 69 (10) ◽  
pp. 1861-1869 ◽  
Author(s):  
S. Ragu Nathan ◽  
V. Balasubramanian ◽  
S. Malarvizhi ◽  
A. G. Rao

Author(s):  
S Ragu Nathan ◽  
V Balasubramanian ◽  
S Malarvizhi ◽  
AG Rao

In this study, the effect of tool shoulder diameter (D) to the plate thickness (Tp) ratio on tensile and impact toughness properties of friction stir-welded naval grade high-strength low-alloy steel was investigated. A naval grade high-strength low-alloy steel of 5 mm thick plates was welded with tool rotational speed of 600 r/min and welding speed of 30 mm/min using tungsten-based alloy tools having D/Tp ratio varying from 4 to 6. Microstructural characteristics of the weld joints were analyzed using optical microscopy and scanning electron microscopy with energy dispersive spectroscopy along with the evaluation of tensile properties. From this investigation, it was found that the joint fabricated using a D/Tp ratio of 5 (25 mm shoulder diameter) exhibited superior mechanical properties compared to other joints.


2017 ◽  
Vol 730 ◽  
pp. 253-258 ◽  
Author(s):  
Takahiro Ohashi ◽  
Hamed Mofidi Tabatabaei ◽  
Tadashi Nishihara

This paper reports friction-stir forming (FSF) of cylindrical pin embossments on JIS A5083 aluminum alloy medium gauge plate. A substrate material was put on an emboss die and conducted friction stirring on its back surface. The die has 1mm diameter and 0.5mm deep fine holes at 1.5mm pitch on its top, and the material successfully filled them due to high pressure and heat caused by friction stirring. Three tools having different shoulder diameter were utilized to investigate the deformable area with a single pass. As a consequence, faster spindle speed, slower tool feed rate, and larger tool shoulder contribute to a wider range of completely formed pins. Extrusion of the material to the die cavity seemed to be mostly limited under the area of the shoulder. The ratios of the band width of the complete pins to the shoulder diameter were increased with the larger diameter of the shoulder of the FSF tool. Therefore, a larger shoulder was more effective for wide-range embossing with a single pass. In addition, we evaluated the shape of formed pins with a non-contact 3D measurement system. Accuracy of the height of the completely formed pins was within ±0.013mm, which was comparable with machining.


2012 ◽  
Vol 445 ◽  
pp. 789-794 ◽  
Author(s):  
Vahid Moosabeiki ◽  
Ghasem Azimi ◽  
Mostafa Ghayoor

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. Friction stir tool plays a major role in friction stir welding process. In this investigation, it is tried to evaluate the effect of tool pin thread and tool shoulder curvature on FSW zone formation in AA6061 aluminium alloy. In this regard, six different tool pin geometries (threadless triangular pin with/without conical shoulder, threaded triangular pin with conical shoulder, threadless square pin with/without conical shoulder, threaded square pin with conical shoulder) are used to fabricate the joints. The formation of FSP zones are analyzed macroscopically. Tensile properties of the joints are evaluated and correlated with the FSP zone formation. Consequently, it is obtained that welding creates a higher quality compared to other tool pin profiles using the square tool with curved shoulder and having threaded pin.


Sign in / Sign up

Export Citation Format

Share Document