scholarly journals Hyperbolic-elliptic model for surface wave in a pre-stressed incompressible elastic half-space

2018 ◽  
Vol 92 ◽  
pp. 49-53 ◽  
Author(s):  
L.A. Khajiyeva ◽  
D.A. Prikazchikov ◽  
L.A. Prikazchikova
1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 1980-1987
Author(s):  
Baljeet Singh ◽  
Baljinder Kaur

The propagation of Rayleigh type surface waves in a rotating elastic half-space of orthotropic type is studied under impedance boundary conditions. The secular equation is obtained explicitly using traditional methodology. A program in MATLAB software is developed to obtain the numerical values of the nondimensional speed of Rayleigh wave. The speed of Rayleigh wave is illustrated graphically against rotation rate, nondimensional material constants, and impedance boundary parameters.


2021 ◽  
Vol 15 (1) ◽  
pp. 30-36
Author(s):  
Askar Kudaibergenov ◽  
Askat Kudaibergenov ◽  
Danila Prikazchikov

Abstract The article is concerned with the analysis of the problem for a concentrated line load moving at a constant speed along the surface of a pre-stressed, incompressible, isotropic elastic half-space, within the framework of the plane-strain assumption. The focus is on the near-critical regimes, when the speed of the load is close to that of the surface wave. Both steady-state and transient regimes are considered. Implementation of the hyperbolic–elliptic asymptotic formulation for the surface wave field allows explicit approximate solution for displacement components expressed in terms of the elementary functions, highlighting the resonant nature of the surface wave. Numerical illustrations of the solutions are presented for several material models.


Author(s):  
Yibin Fu ◽  
Julius Kaplunov ◽  
Danila Prikazchikov

Near-surface resonance phenomena often arise in semi-infinite solids. For instance, when a moving load with a speed v close to the surface wave speed v R is applied to the surface of an elastic half-space, it will give rise to a large-amplitude disturbance inversely proportional to v  −  v R . The latter can be determined by a multiple-scale approach using an extra slow time variable. It has also been shown for isotropic elastic half-spaces that the reduced governing equation thus derived is capable of describing the surface wave contribution even for arbitrary dynamic loading. In this paper, we first derive the analogous evolution equation for a generally anisotropic elastic half-space, and then assess its applicability in the study of travelling waves in a half-space that is coated with a continuous array of spring-like vertical resonators or bonded to an elastic layer of different properties. Our results are validated by comparison with previously known results, and illustrative calculations are carried out for a fibre-reinforced half-space and a coated half-space that is subjected to a finite deformation.


1962 ◽  
Vol 52 (1) ◽  
pp. 27-36
Author(s):  
J. T. Cherry

Abstract The body waves and surface waves radiating from a horizontal stress applied at the free surface of an elastic half space are obtained. The SV wave suffers a phase shift of π at 45 degrees from the vertical. Also, a surface wave that is SH in character but travels with the Rayleigh velocity is shown to exist. This surface wave attenuates as r−3/2. For a value of Poisson's ratio of 0.25 or 0.33, the amplitude of the Rayleigh waves from a horizontal source should be smaller than the amplitude of the Rayleigh waves from a vertical source. The ratio of vertical to horizontal amplitude for the Rayleigh waves from the horizontal source is the same as the corresponding ratio for the vertical source for all values of Poisson's ratio.


1966 ◽  
Vol 62 (4) ◽  
pp. 811-827 ◽  
Author(s):  
R. D. Gregory

AbstractA time harmonic Rayleigh wave, propagating in an elastic half-space y ≥ 0, is incident on a certain impedance boundary condition on y = 0, x > 0. The resulting field consists of a reflected surface wave, scattered body waves, and a transmitted surface wave appropriate to the new boundary conditions. The elastic potentials are found exactly by Fourier transform and the Wiener-Hopf technique in the case of a slightly dissipative medium. The ψ potential is found to have a logarithmic singularity at (0,0), but the φ potential though singular is bounded there. Analytic forms are given for the amplitudes of the reflected and transmitted surface waves, and for the scattered field. The reflexion coefficient is found to have a simple form for small impedances. A uniqueness theorem, based on energy considerations, is proved.


Sign in / Sign up

Export Citation Format

Share Document