scholarly journals Data-point-wise spatiotemporal mapping of human ventral visual areas: Use of spatial frequency/luminance-modulated chromatic faces

NeuroImage ◽  
2021 ◽  
pp. 118325
Author(s):  
Akinori Takeda ◽  
Emi Yamada ◽  
Taira Uehara ◽  
Katsuya Ogata ◽  
Tsuyoshi Okamoto ◽  
...  
2020 ◽  
Vol 123 (2) ◽  
pp. 773-785 ◽  
Author(s):  
Sara Aghajari ◽  
Louis N. Vinke ◽  
Sam Ling

Neurons within early visual cortex are selective for basic image statistics, including spatial frequency. However, these neurons are thought to act as band-pass filters, with the window of spatial frequency sensitivity varying across the visual field and across visual areas. Although a handful of previous functional (f)MRI studies have examined human spatial frequency sensitivity using conventional designs and analysis methods, these measurements are time consuming and fail to capture the precision of spatial frequency tuning (bandwidth). In this study, we introduce a model-driven approach to fMRI analyses that allows for fast and efficient estimation of population spatial frequency tuning (pSFT) for individual voxels. Blood oxygen level-dependent (BOLD) responses within early visual cortex were acquired while subjects viewed a series of full-field stimuli that swept through a large range of spatial frequency content. Each stimulus was generated by band-pass filtering white noise with a central frequency that changed periodically between a minimum of 0.5 cycles/degree (cpd) and a maximum of 12 cpd. To estimate the underlying frequency tuning of each voxel, we assumed a log-Gaussian pSFT and optimized the parameters of this function by comparing our model output against the measured BOLD time series. Consistent with previous studies, our results show that an increase in eccentricity within each visual area is accompanied by a drop in the peak spatial frequency of the pSFT. Moreover, we found that pSFT bandwidth depends on eccentricity and is correlated with the pSFT peak; populations with lower peaks possess broader bandwidths in logarithmic scale, whereas in linear scale this relationship is reversed. NEW & NOTEWORTHY Spatial frequency selectivity is a hallmark property of early visuocortical neurons, and mapping these sensitivities gives us crucial insight into the hierarchical organization of information within visual areas. Due to technical obstacles, we lack a comprehensive picture of the properties of this sensitivity in humans. Here, we introduce a new method, coined population spatial frequency tuning mapping, which circumvents the limitations of the conventional neuroimaging methods, yielding a fuller visuocortical map of spatial frequency sensitivity.


2010 ◽  
Vol 22 (12) ◽  
pp. 2768-2780 ◽  
Author(s):  
Carole Peyrin ◽  
Christoph M. Michel ◽  
Sophie Schwartz ◽  
Gregor Thut ◽  
Mohamed Seghier ◽  
...  

Spatial frequencies in an image influence visual analysis across a distributed, hierarchically organized brain network. Low spatial frequency (LSF) information may rapidly reach high-order areas to allow an initial coarse parsing of the visual scene, which could then be “retroinjected” through feedback into lower level visual areas to guide finer analysis on the basis of high spatial frequency (HSF). To test this “coarse-to-fine” processing scheme and to identify its neural substrates in the human brain, we presented sequences of two spatial-frequency-filtered scenes in rapid succession (LSF followed by HSF or vice versa) during fMRI and ERPs in the same participants. We show that for low-to-high sequences (but not for high-to-low sequences), LSF produces a first increase of activity in prefrontal and temporo-parietal areas, followed by enhanced responses to HSF in primary visual cortex. This pattern is consistent with retroactive influences on low-level areas that process HSF after initial activation of higher order areas by LSF.


2008 ◽  
Vol 8 (10) ◽  
pp. 5-5 ◽  
Author(s):  
L. Henriksson ◽  
L. Nurminen ◽  
A. Hyvarinen ◽  
S. Vanni

2000 ◽  
Vol 84 (4) ◽  
pp. 1907-1913 ◽  
Author(s):  
Bradley G. Goodyear ◽  
David A. Nicolle ◽  
G. Keith Humphrey ◽  
Ravi S. Menon

In this study, we used a temporal two-alternative forced choice psychophysical procedure to measure the observer's perception of a 22% physical contrast grating for each eye as a function of spatial frequency in four subjects with unilateral amblyopia and in six subjects with normal vision. Contrast thresholds were also measured using a standard staircase method. Additionally, blood-oxygenation-level–dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure the neuronal response within early visual cortical areas to monocular presentations of the same 22% physical contrast gratings as a function of spatial frequency. For all six subjects with normal vision and for three subjects with amblyopia, the psychophysically measured perception of 22% contrast as a function of spatial frequency was the same for both eyes. Threshold contrast, however, was elevated for the amblyopic eye for all subjects, as expected. The magnitude of the fMRI response to 22% physical contrast within “activated” voxels was the same for each eye as a function of spatial frequency, regardless of the presence of amblyopia. However, there were always fewer “activated” fMRI voxels during amblyopic stimulation than during normal eye stimulation. These results are consistent with the hypotheses that contrast thresholds are elevated in amblyopia because fewer neurons are responsive during amblyopic stimulation, and that the average firing rate of the responsive neurons, which reflects the perception of contrast, is unaffected in amblyopia.


2020 ◽  
Vol 124 (1) ◽  
pp. 178-191
Author(s):  
Hiroki Tanaka ◽  
Izumi Ohzawa

In cat area 17/18, we found that a local pool of neurons with similar spatial frequency (SF) tunings shows diverse but organized dynamics. Our results suggest that, in the presence of organized tuning diversity within an SF domain, the cortical SF organization remains stable over response time in these areas. Laminar analysis suggests that intracortical mechanisms contribute to generating SF dynamics inside the input layer but do not further shape it outside this layer.


1982 ◽  
Vol 323 (1) ◽  
pp. 603-618 ◽  
Author(s):  
N Berardi ◽  
S Bisti ◽  
A Cattaneo ◽  
A Fiorentini ◽  
L Maffei

Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
Joachim Frank

Cryo-electron microscopy combined with single-particle reconstruction techniques has allowed us to form a three-dimensional image of the Escherichia coli ribosome.In the interior, we observe strong density variations which may be attributed to the difference in scattering density between ribosomal RNA (rRNA) and protein. This identification can only be tentative, and lacks quantitation at this stage, because of the nature of image formation by bright field phase contrast. Apart from limiting the resolution, the contrast transfer function acts as a high-pass filter which produces edge enhancement effects that can explain at least part of the observed variations. As a step toward a more quantitative analysis, it is necessary to correct the transfer function in the low-spatial-frequency range. Unfortunately, it is in that range where Fourier components unrelated to elastic bright-field imaging are found, and a Wiener-filter type restoration would lead to incorrect results. Depending upon the thickness of the ice layer, a varying contribution to the Fourier components in the low-spatial-frequency range originates from an “inelastic dark field” image. The only prospect to obtain quantitatively interpretable images (i.e., which would allow discrimination between rRNA and protein by application of a density threshold set to the average RNA scattering density may therefore lie in the use of energy-filtering microscopes.


Author(s):  
O.L. Krivanek ◽  
M.L. Leber

Three-fold astigmatism resembles regular astigmatism, but it has 3-fold rather than 2-fold symmetry. Its contribution to the aberration function χ(q) can be written as:where A3 is the coefficient of 3-fold astigmatism, λ is the electron wavelength, q is the spatial frequency, ϕ the azimuthal angle (ϕ = tan-1 (qy/qx)), and ϕ3 the direction of the astigmatism.Three-fold astigmatism is responsible for the “star of Mercedes” aberration figure that one obtains from intermediate lenses once their two-fold astigmatism has been corrected. Its effects have been observed when the beam is tilted in a hollow cone over a wide range of angles, and there is evidence for it in high resolution images of a small probe obtained in a field emission gun TEM/STEM instrument. It was also expected to be a major aberration in sextupole-based Cs correctors, and ways were being developed for dealing with it on Cs-corrected STEMs.


Sign in / Sign up

Export Citation Format

Share Document