Differential cross section measurements of the 6.13 MeV gamma ray from proton-induced reaction of fluorine

Author(s):  
M.V. Pham ◽  
L.A. Kesler ◽  
K.B. Woller ◽  
Z.S. Hartwig
2020 ◽  
Vol 35 (03) ◽  
pp. 2040025 ◽  
Author(s):  
Nikita R. Larin ◽  
Victor V. Dubov ◽  
Sergei P. Roshchupkin

The resonant production of electron-positron pairs by a hard gamma-ray on nucleus in an external electromagnetic field is studied theoretically. The main property of this process is that the initial process of the second order in the fine structure constant in an external field effectively splits into two successive processes of the first order due to the fact that in resonant conditions intermediate virtual electron (positron) becomes a real particle. One of these processes is a single-photoproduction of electron-positron pair in a laser field (laser-stimulated Breit-Wheeler process) another is a laser-assisted scattering of electron (positron) on nucleus (laser-assisted Mott scattering). It is shown that the resonances are possible only for the energies of the initial hard gamma-ray more than the characteristic threshold energy. Resonant differential cross section of this process is obtained. It is shown that the resonant differential cross section can significantly exceed the corresponding cross section without an external field. The obtained results may be experimentally verified using the facilities of pulsed laser radiation (SLAC, FAIR, XFEL, ELI, XCELS).


1989 ◽  
Vol 67 (6) ◽  
pp. 545-561
Author(s):  
W. Del Bianco ◽  
M. Carignan

The dependence of the bremsstrahlung perpendicular and parallel triple differential cross sections and the linear polarization on the angles and energies of the incident and scattered electron and of the emitted gamma-ray has been studied in the high-energy small-angle hypothesis. The expression used for the bremsstrahlung triple differential cross section is valid in the Born approximation and for an unscreened Coulomb potential of the nucleus.


2009 ◽  
Vol 18 (02) ◽  
pp. 302-308
Author(s):  
PENGNIAN SHEN ◽  
HANTAO JING ◽  
HUANQING CHIANG

The Λ-hypernucleus (LHN) production in the proton-induced reaction is studied in the distorted wave impulse approximation(DWIA). The cross sections for the LHN production in the reactions where the proton bombards the 6Li, 12C and 16O targets, respectively, are calculated. It is shown that the reaction cross sections are of the order of μb, and the distortion effects tend to reduce the cross sections by a factor of 3~10. For the sΛ–LHN production, the differential cross section is decreased with the increasing mass of the target nucleus. The pΛ–LHN production cross section is normally higher than that for the sΛ–LHN production. The double differential cross sections (DDXS) with respect to the momenta of the outgoing proton and kaon are also demonstrated. The missing mass spectra of the inclusive reaction p+A → p+K++X for the 6Li, 12C and 16O targets, an alternative way to study hypernuclear physics, are proposed. From these spectra, the masses of LHN can accurately be extracted. Moreover, the exotic LHN production in the same type of reaction is also studied . The same physical quantities are calculated. It is shown that the magnitude of the cross section is also in the order of μb. The halo effect of the core nucleus that locates at a place far away from the stable line would make the wave function broader, and consequently reduces the production cross section.


1982 ◽  
Vol 77 (3) ◽  
pp. 1323-1334 ◽  
Author(s):  
Wl/odzimierz Kol/os ◽  
Hendrik J. Monkhorst ◽  
Krzysztof Szalewicz

1993 ◽  
Vol 02 (04) ◽  
pp. 915-921 ◽  
Author(s):  
C. RANGACHARYULU ◽  
A. RICHTER

It is pointed out that the y-dependence of the differential cross-section for various types of neutrinos on the electron promises to be a sensitive testing ground of the electroweak Standard Model at KAON in Vancouver. Estimates of the flux requirements are given and the feasibility of such experiments is discussed.


1996 ◽  
Vol 54 (1) ◽  
pp. 439-443 ◽  
Author(s):  
G. Gasaneo ◽  
W. Cravero ◽  
M. D. Sánchez ◽  
C. R. Garibotti

Sign in / Sign up

Export Citation Format

Share Document