Arachidonic acid release in rat peritoneal mast cells stimulated with antigen, ionophore A23187, and compound 48/80

1985 ◽  
Vol 127 (3) ◽  
pp. 726-732 ◽  
Author(s):  
Yukio Okano ◽  
Yasuhiro Ishizuka ◽  
Shigeru Nakashima ◽  
Toyohiko Tohmatsu ◽  
Hajime Takagi ◽  
...  
1990 ◽  
Vol 259 (5) ◽  
pp. C738-C745 ◽  
Author(s):  
S. L. Hempel ◽  
D. L. Haycraft ◽  
J. C. Hoak ◽  
A. A. Spector

Human umbilical vein endothelial cells subjected to 24 h of anoxia followed by reoxygenation released less prostacyclin (PGI2) in response to thrombin, calcium ionophore A23187, or arachidonic acid. This was associated with a substantial increase in stimulated platelet adherence. Increased lactate dehydrogenase and 51Cr release occurred after 1 h of reoxygenation, but the high rate of release did not persist during the subsequent 23 h of reoxygenation. The changes in platelet adherence and PGI2 release partially resolved over 24 h. PGI2 formation from prostaglandin H2 was not reduced, suggesting that cyclooxygenase activity, but not prostacyclin synthase, is affected by reoxygenation. A decrease in arachidonic acid release from cellular lipids also occurred. The reduction in cyclooxygenase activity, but not arachidonic acid release, was prevented by the presence of ibuprofen during reoxygenation. Addition of catalase or superoxide dismutase during reoxygenation increased PGI2 release but did not completely overcome the reduction relative to control cultures. These findings suggest that the increase in platelet adherence during reoxygenation may be mediated in part by a change in cyclooxygenase activity. This is only partly overcome by extracellular oxygen species scavengers but is prevented by the presence of a reversible cyclooxygenase inhibitor during reoxygenation.


1992 ◽  
Vol 263 (4) ◽  
pp. L454-L459
Author(s):  
W. E. Holden ◽  
E. M. Burnham ◽  
M. A. Lee ◽  
S. P. Bagby

Eicosanoid products of arachidonic acid are suspected modulators of hypoxic vasoconstriction in the pulmonary vasculature. Vascular endothelial cells (EC) release several eicosanoids, but there is disagreement regarding the effect of hypoxia on EC eicosanoid release. We postulated that the oxygen level of growth in culture might influence the release of eicosanoids during acute hypoxia. We studied EC cultured from the main pulmonary arteries of pigs and grown at either 5% or near 20% oxygen, representing the normal limits of oxygen exposure to endothelium in normal lungs. Although cultures grown in 5% oxygen grew slightly faster by 4 days, the confluent cell number, protein content, and baseline eicosanoid release were no different compared with paired cultures grown in 20% oxygen. However, with an acute decrease in oxygen level, cultures grown in 5% oxygen released less prostaglandin E2, F2 alpha, and 6-ketoprostaglandin F1 alpha compared with amounts released at the growth oxygen level. In contrast, cultures grown in 20% oxygen released increased amounts of these eicosanoids compared with release at the growth oxygen level. Release of thromboxane B2 was not significantly different during hypoxia between cultures grown at 5% vs. 20% oxygen. In other experiments, cyclooxygenase activity, stimulated arachidonic acid release by calcium ionophore A23187, and uptake of arachidonic acid were no different in cultures grown at 5% vs. 20% oxygen. However, arachidonic acid release during hypoxia was reduced in 5% cultures and increased in 20% cultures.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document