A note on an equivalence relation on fuzzy subgroups

1998 ◽  
Vol 95 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Yunjie Zhang ◽  
Kaiqi Zou
Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6151-6160
Author(s):  
Ardekani Kamali

The study concerning the classification of the fuzzy subgroups of finite groups is a significant aspect of fuzzy group theory. In early papers, the number of distinct fuzzy subgroups of some nonabelian groups is calculated by the natural equivalence relation. In this paper, we treat to classifying fuzzy subgroups of some groups by a new equivalence relation which has a consistent group theoretical foundation. In fact, we determine exact number of fuzzy subgroups of finite non-abelian groups of order p3 and special classes of dihedral groups.


2003 ◽  
Vol 2003 (36) ◽  
pp. 2303-2313 ◽  
Author(s):  
V. Murali ◽  
B. B. Makamba

This paper is the third in a series of papers studying equivalence classes of fuzzy subgroups of a given group under a suitable equivalence relation. We introduce the notion of a pinned flag in order to study the operations sum, intersection and union, and their behavior with respect to the equivalence. Further, we investigate the extent to which a homomorphism preserves the equivalence. Whenever the equivalences are not preserved, we have provided suitable counterexamples.


Author(s):  
Rasul Rasuli

In this study, by using t-norms, fuzzy equivalence relation, fuzzy congrunce relation on group G, fuzzy relation of subgroup H of group G, fuzzy normal subgroups of fuzzy subgroups, direct product of fuzzy subgroups(normal fuzzy subgroups) are introduced and some the their properties will be discussed. Next by using group homomorphisms, the image and pree image of them will be investigated.


2021 ◽  
pp. 1-10
Author(s):  
Narjes Firouzkouhi ◽  
Abbas Amini ◽  
Chun Cheng ◽  
Mehdi Soleymani ◽  
Bijan Davvaz

Inspired by fuzzy hyperalgebras and fuzzy polynomial function (term function), some homomorphism properties of fundamental relation on fuzzy hyperalgebras are conveyed. The obtained relations of fuzzy hyperalgebra are utilized for certain applications, i.e., biological phenomena and genetics along with some elucidatory examples presenting various aspects of fuzzy hyperalgebras. Then, by considering the definition of identities (weak and strong) as a class of fuzzy polynomial function, the smallest equivalence relation (fundamental relation) is obtained which is an important tool for fuzzy hyperalgebraic systems. Through the characterization of these equivalence relations of a fuzzy hyperalgebra, we assign the smallest equivalence relation α i 1 i 2 ∗ on a fuzzy hyperalgebra via identities where the factor hyperalgebra is a universal algebra. We extend and improve the identities on fuzzy hyperalgebras and characterize the smallest equivalence relation α J ∗ on the set of strong identities.


2020 ◽  
pp. 1-15
Author(s):  
ALEXANDER S. KECHRIS ◽  
MACIEJ MALICKI ◽  
ARISTOTELIS PANAGIOTOPOULOS ◽  
JOSEPH ZIELINSKI

Abstract It is a long-standing open question whether every Polish group that is not locally compact admits a Borel action on a standard Borel space whose associated orbit equivalence relation is not essentially countable. We answer this question positively for the class of all Polish groups that embed in the isometry group of a locally compact metric space. This class contains all non-archimedean Polish groups, for which we provide an alternative proof based on a new criterion for non-essential countability. Finally, we provide the following variant of a theorem of Solecki: every infinite-dimensional Banach space has a continuous action whose orbit equivalence relation is Borel but not essentially countable.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 949
Author(s):  
Zhen Li ◽  
Xiaoyan Zhang

As a further extension of the fuzzy set and the intuitive fuzzy set, the interval-valued intuitive fuzzy set (IIFS) is a more effective tool to deal with uncertain problems. However, the classical rough set is based on the equivalence relation, which do not apply to the IIFS. In this paper, we combine the IIFS with the ordered information system to obtain the interval-valued intuitive fuzzy ordered information system (IIFOIS). On this basis, three types of multiple granulation rough set models based on the dominance relation are established to effectively overcome the limitation mentioned above, which belongs to the interdisciplinary subject of information theory in mathematics and pattern recognition. First, for an IIFOIS, we put forward a multiple granulation rough set (MGRS) model from two completely symmetry positions, which are optimistic and pessimistic, respectively. Furthermore, we discuss the approximation representation and a few essential characteristics for the target concept, besides several significant rough measures about two kinds of MGRS symmetry models are discussed. Furthermore, a more general MGRS model named the generalized MGRS (GMGRS) model is proposed in an IIFOIS, and some important properties and rough measures are also investigated. Finally, the relationships and differences between the single granulation rough set and the three types of MGRS are discussed carefully by comparing the rough measures between them in an IIFOIS. In order to better utilize the theory to realistic problems, an actual case shows the methods of MGRS models in an IIFOIS is given in this paper.


Author(s):  
Yanfang Liu ◽  
Hong Zhao ◽  
William Zhu

Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a generalization of linear algebra and graph theory. Recently, a matroidal structure of rough sets is established and applied to the problem of attribute reduction which is an important application of rough set theory. In this paper, we propose a new matroidal structure of rough sets and call it a parametric matroid. On the one hand, for an equivalence relation on a universe, a parametric set family, with any subset of the universe as its parameter, is defined through the lower approximation operator. This parametric set family is proved to satisfy the independent set axiom of matroids, therefore a matroid is generated, and we call it a parametric matroid of the rough set. Through the lower approximation operator, three equivalent representations of the parametric set family are obtained. Moreover, the parametric matroid of the rough set is proved to be the direct sum of a partition-circuit matroid and a free matroid. On the other hand, partition-circuit matroids are well studied through the lower approximation number, and then we use it to investigate the parametric matroid of the rough set. Several characteristics of the parametric matroid of the rough set, such as independent sets, bases, circuits, the rank function and the closure operator, are expressed by the lower approximation number.


Sign in / Sign up

Export Citation Format

Share Document