Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy

2003 ◽  
Vol 51 (20) ◽  
pp. 6139-6149 ◽  
Author(s):  
Cheng Xu ◽  
Minoru Furukawa ◽  
Zenji Horita ◽  
Terence G Langdon
2008 ◽  
Vol 584-586 ◽  
pp. 164-169 ◽  
Author(s):  
Krystof Turba ◽  
Premysl Malek ◽  
Edgar F. Rauch ◽  
Miroslav Cieslar

Equal-channel angular pressing (ECAP) at 443 K was used to introduce an ultra-fine grained (UFG) microstructure to a Zr and Sc modified 7075 aluminum alloy. Using the methods of TEM and EBSD, an average grain size of 0.6 1m was recorded after the pressing. The UFG microstructure remained very stable up to the temperature of 723 K, where the material exhibited high strain rate superplasticity (HSRSP) with elongations to failure of 610 % and 410 % at initial strain rates of 6.4 x 10-2 s-1 and 1 x 10-1 s-1, respectively. A strain rate sensitivity parameter m in the vicinity of 0.45 was observed at temperatures as high as 773 K. At this temperature, the material still reached an elongation to failure of 430 % at 2 x 10-2 s-1. These results confirm the stabilizing effect of the Zr and Sc additions on the UFG microstructure in a 7XXX series aluminum alloy produced by severe plastic deformation.


JOM ◽  
2011 ◽  
Vol 63 (2) ◽  
pp. 53-56 ◽  
Author(s):  
Dung D. Luong ◽  
Nikhil Gupta ◽  
Atef Daoud ◽  
Pradeep K. Rohatgi

2021 ◽  
Vol 35 (12) ◽  
pp. 5405-5413
Author(s):  
Keguo Zhang ◽  
Yang Cao ◽  
Jianlin An ◽  
Keyi Wang

2019 ◽  
Vol 754 ◽  
pp. 602-612 ◽  
Author(s):  
A.G. Odeshi ◽  
A.A. Tiamiyu ◽  
D. Das ◽  
N. Katwal ◽  
I.N.A. Oguocha ◽  
...  

1990 ◽  
Vol 196 ◽  
Author(s):  
Norio Furushiro ◽  
Shigenori Hori

ABSTRACTIt has been expected that “High rate superplastic materials” will be developed for industrial applications. The Dorntype equation for high temperature deformation suggests that strain rate can be increased if the grain size is decreased. This means that grain refinement can effectively establish high strain rate superplastic materials.It is well known that a high degree of grain size refinement will result from the addition of zirconium to Al-base alloys. Powder-metallurgical processing with rapidly solidified powders is also available for the improvement of superplasticity by both the refinement of the solidified structure and the maintenance of the stable fine structure of a 7475 Al alloy during recrystallization and deformation. Therefore. P/M 7475 Al alloys containing Zr up to 0.9 wt% were selected as candidate specimens. The objective of the present paper includes the clarification of the role and the effective amount of Zr to obtain high strain rate superplastic materials. As a result, the addition of 0.3%Zr or more is effective in grain refinement of the P/M 7475 Al alloy. However, alloys containing 0.7 and 0.9 wt%Zr only show superplasticity at 793K. The optimum strain rate is shifted to a higher range with increasing Zr. The alloy of 7475 Al-0.9%Zr shows the maximum elongation of 900% at the remarkably high strain rate of 3.3×10−1 s−1.The deformation mechanism of such high stain rate superplasticity will be discussed briefly, by considering the effect of the fine particles of Zr on superplastic behavior.


Sign in / Sign up

Export Citation Format

Share Document