scholarly journals On the completeness of the quotient algebras of a complete boolean algebra I

1958 ◽  
Vol 61 ◽  
pp. 448-456 ◽  
Author(s):  
Ph. Dwinger
2008 ◽  
Vol 73 (4) ◽  
pp. 1433-1457 ◽  
Author(s):  
Miloš S. Kurilić ◽  
Boris Šobot

AbstractThe game is played on a complete Boolean algebra , by two players. White and Black, in κ-many moves (where κ is an infinite cardinal). At the beginning White chooses a non-zero element p ∈ . In the α-th move White chooses pα ∈ (0, p) and Black responds choosing iα ∈{0, 1}. White winsthe play iff . where and .The corresponding game theoretic properties of c.B.a.'s are investigated. So, Black has a winning strategy (w.s.) if κ ≥ π() or if contains a κ-closed dense subset. On the other hand, if White has a w.s., then κ ∈ . The existence of w.s. is characterized in a combinatorial way and in terms of forcing. In particular, if 2<κ = κ ∈ Reg and forcing by preserves the regularity of κ, then White has a w.s. iff the power 2κ is collapsed to κ in some extension. It is shown that, under the GCH, for each set S ⊆ Reg there is a c.B.a. such that White (respectively. Black) has a w.s. for each infinite cardinal κ ∈ S (resp. κ ∉ S). Also it is shown consistent that for each κ ∈ Reg there is a c.B.a. on which the game is undetermined.


1996 ◽  
Vol 182 (3) ◽  
pp. 748-755 ◽  
Author(s):  
Thomas Jech ◽  
Saharon Shelah

1987 ◽  
Vol 52 (2) ◽  
pp. 530-542
Author(s):  
R. Michael Canjar

Throughout this paper, B will always be a Boolean algebra and Γ an ultrafilter on B. We use + and Σ for the Boolean join operation and · and Π for the Boolean meet.κ is always a regular cardinal. C(κ) is the full structure of κ, the structure with universe κ and whose functions and relations consist of all unitary functions and relations on κ. κB is the collection of all B-valued names for elements of κ. We use symbols f, g, h for members of κB. Formally an element f ∈ κB is a mapping κ → B with the properties that Σα∈κf(α) = 1B and that f(α) · f(β) = 0B whenever α ≠ β. We view f(α) as the Boolean-truth value indicating the extent to which the name f is equal to α, and we will hereafter write ∥f = α∥ for f(α). For every α ∈ κ there is a canonical name fα ∈ κB which has the property that ∥fα = α∥ = 1. Hereafter we identify α and fα.If B is a κ+-complete Boolean algebra and Γ is an ultrafilter on B, then we may define the Boolean ultraproduct C(κ)B/Γ in the following manner. If ϕ(x0, x1, …, xn) is a formula of Lκ, the language for C(κ) (which has symbols for all finitary functions and relations on κ), and f0, f1, …, fn−1 are elements of κB then we define the Boolean-truth value of ϕ(f0, f1, …, fn−1) as


1978 ◽  
Vol 19 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Dorothy Maharam ◽  
A.H. Stone

Let C(X) denote the complete boolean algebra of Borel sets modulo first category sets of the space X. Given an isomorphism τ between C(X) and C(Y), where X and Y are complete metric spaces, it is shown that there exists a homeomorphism T, between residual subsets A of X and B of Y, that induces τ. When X = Y one can make A = B. An analogous result is stated when τ is a complete isomorphism onto a subalgebra.


2003 ◽  
Vol 67 (2) ◽  
pp. 297-303 ◽  
Author(s):  
J. Bonet ◽  
W. J. Ricker

Conditions are presented which ensure that an abstractly σ-complete Boolean algebra of projections on a (DF)-space or on an (LF)-space is necessarily equicontinuous and/or the range of a spectral measure. This is an extension, to a large and important class of locally convex spaces, of similar and well known results due to W. Bade (respectively, B. Walsh) in the setting of normed (respectively metrisable) spaces.


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3389-3395
Author(s):  
Milos Kurilic ◽  
Boris Sobot

The games G2 and G3 are played on a complete Boolean algebra B in ?-many moves. At the beginning White picks a non-zero element p of B and, in the n-th move, White picks a positive pn < p and Black chooses an in ? {0,1}. White wins G2 iff lim inf pin,n = 0 and wins G3 iff W A?[?]? ? n?A pin,n = 0. It is shown that White has a winning strategy in the game G2 iff White has a winning strategy in the cut-and-choose game Gc&c introduced by Jech. Also, White has a winning strategy in the game G3 iff forcing by B produces a subset R of the tree <?2 containing either ??0 or ??1, for each ? ? <?2, and having unsupported intersection with each branch of the tree <?2 belonging to V. On the other hand, if forcing by B produces independent (splitting) reals then White has a winning strategy in the game G3 played on B. It is shown that ? implies the existence of an algebra on which these games are undetermined.


Sign in / Sign up

Export Citation Format

Share Document