Interpretation of Some In-Situ Tracer Experiments in Fractured Crystalline Rock at Äspö Hard Rock Laboratory

Author(s):  
Ivars Neretnieks
2018 ◽  
Vol 52 (2) ◽  
pp. 495-515 ◽  
Author(s):  
Günter Zimmermann ◽  
Arno Zang ◽  
Ove Stephansson ◽  
Gerd Klee ◽  
Hana Semiková

1985 ◽  
Vol 50 ◽  
Author(s):  
H. Abelin ◽  
L. Birgersson ◽  
J. Gidlund ◽  
L. Moreno ◽  
I. Neretnieks ◽  
...  

In a final repository for radioactive waste in crystalline rock, water flowing in the fractures may transport the radionuclides eventually leached from the waste. To be able to predict the migration of the radionuclides the processes involved must be understood. To quantify the processes, data from flow and transport in real fractures under realistic conditions are needed. Models used for prediction must include descriptions of the important processes and mechanisms.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Margarita Lopez-Fernandez ◽  
Domenico Simone ◽  
Xiaofen Wu ◽  
Lucile Soler ◽  
Emelie Nilsson ◽  
...  

ABSTRACT The continental subsurface is suggested to contain a significant part of the earth’s total biomass. However, due to the difficulty of sampling, the deep subsurface is still one of the least understood ecosystems. Therefore, microorganisms inhabiting this environment might profoundly influence the global nutrient and energy cycles. In this study, in situ fixed RNA transcripts from two deep continental groundwaters from the Äspö Hard Rock Laboratory (a Baltic Sea-influenced water with a residence time of <20 years, defined as “modern marine,” and an “old saline” groundwater with a residence time of thousands of years) were subjected to metatranscriptome sequencing. Although small subunit (SSU) rRNA gene and mRNA transcripts aligned to all three domains of life, supporting activity within these community subsets, the data also suggested that the groundwaters were dominated by bacteria. Many of the SSU rRNA transcripts grouped within newly described candidate phyla or could not be mapped to known branches on the tree of life, suggesting that a large portion of the active biota in the deep biosphere remains unexplored. Despite the extremely oligotrophic conditions, mRNA transcripts revealed a diverse range of metabolic strategies that were carried out by multiple taxa in the modern marine water that is fed by organic carbon from the surface. In contrast, the carbon dioxide- and hydrogen-fed old saline water with a residence time of thousands of years predominantly showed the potential to carry out translation. This suggested these cells were active, but waiting until an energy source episodically becomes available. IMPORTANCE A newly designed sampling apparatus was used to fix RNA under in situ conditions in the deep continental biosphere and benchmarks a strategy for deep biosphere metatranscriptomic sequencing. This apparatus enabled the identification of active community members and the processes they carry out in this extremely oligotrophic environment. This work presents for the first time evidence of eukaryotic, archaeal, and bacterial activity in two deep subsurface crystalline rock groundwaters from the Äspö Hard Rock Laboratory with different depths and geochemical characteristics. The findings highlight differences between organic carbon-fed shallow communities and carbon dioxide- and hydrogen-fed old saline waters. In addition, the data reveal a large portion of uncharacterized microorganisms, as well as the important role of candidate phyla in the deep biosphere, but also the disparity in microbial diversity when using standard microbial 16S rRNA gene amplification versus the large unknown portion of the community identified with unbiased metatranscriptomes.


1987 ◽  
Vol 112 ◽  
Author(s):  
Ian G. McKinley ◽  
W. Russell Alexander ◽  
Claudine Bajo ◽  
Urs Frick ◽  
Jörg Hadermann ◽  
...  

AbstractThis paper describes the programme for an in-situ radionuclide migration experiment in fractured crystalline rock and presents the first results of site characterisation work. This study is particularly notable for its extensive hydrologic/geochemical support programme and the use of radiotracers identified as important in safety assessment studies.


Sign in / Sign up

Export Citation Format

Share Document