An argument of a function in H1/2

2012 ◽  
Vol 55 (2) ◽  
pp. 507-511
Author(s):  
Takahiko Nakazi ◽  
Takanori Yamamoto

AbstractLet H1/2 be the Hardy space on the open unit disc. For two non-zero functions f and g in H1/2, we study the relation between f and g when f/g ≥ 0 a.e. on ∂D. Then we generalize a theorem of Neuwirth and Newman and Helson and Sarason with a simple proof.

2021 ◽  
Vol 8 (1) ◽  
pp. 13-23
Author(s):  
John Clifford ◽  
Michael Dabkowski ◽  
Alan Wiggins

Abstract In this paper we investigate the numerical range of C* bφ m Caφ n and Caφ n C* bφ m on the Hardy space where φ is an inner function fixing the origin and a and b are points in the open unit disc. In the case when |a| = |b| = 1 we characterize the numerical range of these operators by constructing lacunary polynomials of unit norm whose image under the quadratic form incrementally foliate the numerical range. In the case when a and b are small we show numerical range of both operators is equal to the numerical range of the operator restricted to a 3-dimensional subspace.


1986 ◽  
Vol 28 (1) ◽  
pp. 47-54 ◽  
Author(s):  
F. F. Bonsall ◽  
D. Walsh

Peller [4, 5] has proved that a Hankel operator S on the Hardy space H2 is in the trace class if and only if with h analytic on the open unit disc Dand with its second derivative belonging to the Bergman space L1a. This theorem does not include an estimate for the trace class norm ∥S∥1, of the operator in terms of the symbol function. In fact it is clear that cannot give an estimate for since the first two terms in the coefficient sequence of the Hankel operator have been removed by differentiation.


1985 ◽  
Vol 37 (1) ◽  
pp. 62-74 ◽  
Author(s):  
W. P. Novinger ◽  
D. M. Oberlin

For 1 ≦ p < ∞ let Hp denote the familiar Hardy space of analytic functions on the open unit disc D and let ‖·‖ denote the Hp norm. Let Sp denote the space of analytic functions f on D such that f′ ∊ Hp. In this paper we will describe the linear isometries of Sp into itself when Sp is equipped with either of two norms. The first norm we consider is given by(1)and the second by(2)(It is well known [1, Theorem 3.11] that f′ ∊ Hp implies continuity for f on D, the closure of D. Thus (2) actually defines a norm on Sp.) In the former case, with the norm defined by (1), we will show that an isometry of Sp induces, in a sense to be made precise in Section 2, an isometry of Hp and that Forelli's characterization [2] of the isometries of Hp can thus be used to describe the isometries of Hp.


2019 ◽  
Vol 11 (1) ◽  
pp. 5-17 ◽  
Author(s):  
Om P. Ahuja ◽  
Asena Çetinkaya ◽  
V. Ravichandran

Abstract We study a family of harmonic univalent functions in the open unit disc defined by using post quantum calculus operators. We first obtained a coefficient characterization of these functions. Using this, coefficients estimates, distortion and covering theorems were also obtained. The extreme points of the family and a radius result were also obtained. The results obtained include several known results as special cases.


2019 ◽  
Vol 28 (1) ◽  
pp. 85-90
Author(s):  
YASAR POLATOGLU ◽  
◽  
ASENA CETINKAYA ◽  
OYA MERT ◽  
◽  
...  

In the present paper, we introduce a new subclass of normalized analytic starlike functions by using bounded radius rotation associated with q- analogues in the open unit disc \mathbb D. We investigate growth theorem, radius of starlikeness and coefficient estimate for the new subclass of starlike functions by using bounded radius rotation associated with q- analogues denoted by \mathcal{R}_k(q), where k\geq2, q\in(0,1).


1971 ◽  
Vol 23 (2) ◽  
pp. 257-269 ◽  
Author(s):  
Stephen Fisher

The theorems in this paper are all concerned with either pointwise or uniform approximation by functions which have unit modulus or by convex combinations of such functions. The results are related to, and are outgrowths of, the theorems in [4; 5; 10].In § 1, we show that a function bounded by 1, which is analytic in the open unit disc Δ and continuous on may be approximated uniformly on the set where it has modulus 1 (subject to certain restrictions; see Theorem 1) by a finite Blaschke product; that is, by a function of the form*where |λ| = 1 and |αi| < 1, i = 1, …, N. In § 1 we also discuss pointwise approximation by Blaschke products with restricted zeros.


1981 ◽  
Vol 24 (3) ◽  
pp. 347-350
Author(s):  
Lawrence A. Harris

AbstractA Hausdorff-Young theorem is given for Lp-valued analytic functions on the open unit disc and estimates on such functions and their derivatives are deduced.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. Y. Lashin

Coefficient conditions, distortion bounds, extreme points, convolution, convex combinations, and neighborhoods for a new class of harmonic univalent functions in the open unit disc are investigated. Further, a class preserving integral operator and connections with various previously known results are briefly discussed.


Author(s):  
Richard F. Basener

SynopsisLet S be a compact subset of the open unit disc in C. Associate to S the setLet R(X) be the uniform algebra on X generated by the rational functions which are holomorphic near X. It is shown that the spectrum of R(X) is determined in a simple wayby the potential-theoretic properties of S. In particular, the spectrum of R(X) is X if and only if the functions harmonic near S are uniformly dense in the continuous functions on S. Similar results can be obtained for other subsets of C2 constructed from compact subsets of C.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Akhter Rasheed ◽  
Saqib Hussain ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus

In this paper, we introduce a new subclass of analytic functions in open unit disc. We obtain coefficient estimates, extreme points, and distortion theorem. We also derived the radii of close-to-convexity and starlikeness for this class.


Sign in / Sign up

Export Citation Format

Share Document