scholarly journals Biquasitriangularity and spectral continuity

1985 ◽  
Vol 26 (2) ◽  
pp. 177-180 ◽  
Author(s):  
Ridgley Lange

In [6] Conway and Morrell characterized those operators on Hilbert space that are points of continuity of the spectrum. They also gave necessary and sufficient conditions that a biquasitriangular operator be a point of spectral continuity. Our point of view in this note is slightly different. Given a point T of spectral continuity, we ask what can then be inferred. Several of our results deal with invariant subspaces. We also give some conditions characterizing a biquasitriangular point of spectral continuity (Theorem 3). One of these is that the operator and its adjoint both have the single-valued extension property.

2020 ◽  
Vol 51 (2) ◽  
pp. 81-99
Author(s):  
Mohammad M.H Rashid

Let $M_C=\begin{pmatrix} A & C \\ 0 & B \\ \end{pmatrix}\in\LB(\x,\y)$ be be an upper triangulate Banach spaceoperator. The relationship between the spectra of $M_C$ and $M_0,$ and theirvarious distinguished parts, has been studied by a large number of authors inthe recent past. This paper brings forth the important role played by SVEP,the {\it single-valued extension property,} in the study of some of these relations. In this work, we prove necessary and sufficient conditions of implication of the type $M_0$ satisfies property $(w)$ $\Leftrightarrow$ $M_C$ satisfies property $(w)$ to hold. Moreover, we explore certain conditions on $T\in\LB(\hh)$ and $S\in\LB(\K)$ so that the direct sum $T\oplus S$ obeys property $(w)$, where $\hh$ and $\K$ are Hilbert spaces.


Filomat ◽  
2010 ◽  
Vol 24 (2) ◽  
pp. 111-130 ◽  
Author(s):  
B.P. Duggal

Let MC = (A/0 C/B) ( B(X ( X ) be an upper triangulat Banach space operator. The relationship between the spectra of MC and M0, and their various distinguished parts, has been studied by a large number of authors in the recent past. This paper brings forth the important role played by SVEP, the single-valued extension property, in the study of some of these relations. Operators MC and M0 satisfying Browder's, or a-Browder's, theorem are characterized, and we prove necessary and sufficient conditions for implications of the type 'M0 satisfies a-Browder's (or a-Weyl's) theorem ( MC satisfies a-Browder's (resp., a-Weyl's) theorem' to hold. 2010 Mathematics Subject Classifications. Primary 47B47, 47A10, 47A11. .


2019 ◽  
Vol 5 (344) ◽  
pp. 17-27
Author(s):  
Małgorzata Graczyk ◽  
Bronisław Ceranka

The problem of determining unknown measurements of objects in the model of spring balance weighing designs is presented. These designs are considered under the assumption that experimental errors are uncorrelated and that they have the same variances. The relations between the parameters of weighing designs are deliberated from the point of view of optimality criteria. In the paper, designs in which the product of the variances of estimators is possibly the smallest one, i.e. D‑optimal designs, are studied. A highly D‑efficient design in classes in which a D‑optimal design does not exist are determined. The necessary and sufficient conditions under which a highly efficient design exists and methods of its construction, along with relevant examples, are introduced.


1980 ◽  
Vol 35 (4) ◽  
pp. 437-441 ◽  
Author(s):  
W. Rehder

Abstract Necessary and sufficient conditions for commutativity of two projections in Hilbert space are given through properties of so-called conditional connectives which are derived from the conditional probability operator PQP. This approach unifies most of the known proofs, provides a few new criteria, and permits certain suggestive interpretations for compound properties of quantum-mechanical systems.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Nguyen Thanh Lan

For the differential equation , on a Hilbert space , we find the necessary and sufficient conditions that the above-mentioned equation has a unique almost periodic solution. Some applications are also given.


1992 ◽  
Vol 04 (spec01) ◽  
pp. 15-47 ◽  
Author(s):  
H.J. BORCHERS ◽  
JAKOB YNGVASON

The subject of the paper is an old problem of the general theory of quantized fields: When can the unbounded operators of a Wightman field theory be associated with local algebras of bounded operators in the sense of Haag? The paper reviews and extends previous work on this question, stressing its connections with a noncommutive generalization of the classical Hamburger moment problem. Necessary and sufficient conditions for the existence of a local net of von Neumann algebras corresponding to a given Wightman field are formulated in terms of strengthened versions of the usual positivity property of Wightman functionals. The possibility that the local net has to be defined in an enlarged Hilbert space cannot be ruled out in general. Under additional hypotheses, e.g., if the field operators obey certain energy bounds, such an extension of the Hilbert space is not necessary, however. In these cases a fairly simple condition for the existence of a local net can be given involving the concept of “central positivity” introduced by Powers. The analysis presented here applies to translationally covariant fields with an arbitrary number of components, whereas Lorentz covariance is not needed. The paper contains also a brief discussion of an approach to noncommutative moment problems due to Dubois-Violette, and concludes with some remarks on modular theory for algebras of unbounded operators.


2010 ◽  
Vol 89 (3) ◽  
pp. 309-315 ◽  
Author(s):  
ROBERTO CONTI

AbstractThe automorphisms of the canonical core UHF subalgebra ℱn of the Cuntz algebra 𝒪n do not necessarily extend to automorphisms of 𝒪n. Simple examples are discussed within the family of infinite tensor products of (inner) automorphisms of the matrix algebras Mn. In that case, necessary and sufficient conditions for the extension property are presented. Also addressed is the problem of extending to 𝒪n the automorphisms of the diagonal 𝒟n, which is a regular maximal abelian subalgebra with Cantor spectrum. In particular, it is shown that there exist product-type automorphisms of 𝒟n that do not extend to (possibly proper) endomorphisms of 𝒪n.


1996 ◽  
Vol 28 (3) ◽  
pp. 784-801 ◽  
Author(s):  
I-Jeng Wang ◽  
Edwin K. P. Chong ◽  
Sanjeev R. Kulkarni

We consider stochastic approximation algorithms on a general Hilbert space, and study four conditions on noise sequences for their analysis: Kushner and Clark's condition, Chen's condition, a decomposition condition, and Kulkarni and Horn's condition. We discuss various properties of these conditions. In our main result we show that the four conditions are all equivalent, and are both necessary and sufficient for convergence of stochastic approximation algorithms under appropriate assumptions.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Karim Hedayatian ◽  
Lotfollah Karimi

A bounded linear operatorTon a Hilbert spaceℋ, satisfying‖T2h‖2+‖h‖2≥2‖Th‖2for everyh∈ℋ, is called a convex operator. In this paper, we give necessary and sufficient conditions under which a convex composition operator on a large class of weighted Hardy spaces is an isometry. Also, we discuss convexity of multiplication operators.


Author(s):  
Nikos Halidias

In this note we study the binomial model applied to European, American and Bermudan type of derivatives. Our aim is to give the necessary and sufficient conditions under which we can define a fair value via replicating portfolios for any derivative using simple mathematical arguments and without using no arbitrage techniques. Giving suitable definitions we are able to define rigorously the fair value of any derivative without using concepts from probability theory or stochastic analysis therefore is suitable for students or young researchers. It will be clear in our analysis that if $e^{r \delta} \notin [d,u]$ then we can not define a fair value by any means for any derivative while if $d \leq e^{r \delta} \leq u$ we can. Therefore the definition of the fair value of a derivative is not so closely related with the absence of arbitrage. In the usual probabilistic point of view we assume that $d < e^{r \delta} < u$ in order to define the fair value but it is not clear what we can (or we can not) do in the cases where $e^{r \delta} \leq d$ or $e^{r \delta} \geq u$.


Sign in / Sign up

Export Citation Format

Share Document