scholarly journals AUTOMORPHISMS OF THE UHF ALGEBRA THAT DO NOT EXTEND TO THE CUNTZ ALGEBRA

2010 ◽  
Vol 89 (3) ◽  
pp. 309-315 ◽  
Author(s):  
ROBERTO CONTI

AbstractThe automorphisms of the canonical core UHF subalgebra ℱn of the Cuntz algebra 𝒪n do not necessarily extend to automorphisms of 𝒪n. Simple examples are discussed within the family of infinite tensor products of (inner) automorphisms of the matrix algebras Mn. In that case, necessary and sufficient conditions for the extension property are presented. Also addressed is the problem of extending to 𝒪n the automorphisms of the diagonal 𝒟n, which is a regular maximal abelian subalgebra with Cantor spectrum. In particular, it is shown that there exist product-type automorphisms of 𝒟n that do not extend to (possibly proper) endomorphisms of 𝒪n.

2020 ◽  
Vol 30 (6) ◽  
pp. 375-389
Author(s):  
Igor V. Cherednik

AbstractWe study the set of transformations {ΣF : F∈ 𝓑∗(Ω)} implemented by a network Σ with a single binary operation F, where 𝓑∗(Ω) is the set of all binary operations on Ω that are invertible as function of the second variable. We state a criterion of bijectivity of all transformations from the family {ΣF : F∈ 𝓑∗(Ω)} in terms of the structure of the network Σ, identify necessary and sufficient conditions of transitivity of the set of transformations {ΣF : F∈ 𝓑∗(Ω)}, and propose an efficient way of verifying these conditions. We also describe an algorithm for construction of networks Σ with transitive sets of transformations {ΣF : F∈ 𝓑∗(Ω)}.


1985 ◽  
Vol 26 (2) ◽  
pp. 177-180 ◽  
Author(s):  
Ridgley Lange

In [6] Conway and Morrell characterized those operators on Hilbert space that are points of continuity of the spectrum. They also gave necessary and sufficient conditions that a biquasitriangular operator be a point of spectral continuity. Our point of view in this note is slightly different. Given a point T of spectral continuity, we ask what can then be inferred. Several of our results deal with invariant subspaces. We also give some conditions characterizing a biquasitriangular point of spectral continuity (Theorem 3). One of these is that the operator and its adjoint both have the single-valued extension property.


1977 ◽  
Vol 16 (3) ◽  
pp. 361-369
Author(s):  
M. Deza ◽  
Peter Eades

Necessary and sufficient conditions are given for a square matrix to te the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.


2020 ◽  
Vol 51 (2) ◽  
pp. 81-99
Author(s):  
Mohammad M.H Rashid

Let $M_C=\begin{pmatrix} A & C \\ 0 & B \\ \end{pmatrix}\in\LB(\x,\y)$ be be an upper triangulate Banach spaceoperator. The relationship between the spectra of $M_C$ and $M_0,$ and theirvarious distinguished parts, has been studied by a large number of authors inthe recent past. This paper brings forth the important role played by SVEP,the {\it single-valued extension property,} in the study of some of these relations. In this work, we prove necessary and sufficient conditions of implication of the type $M_0$ satisfies property $(w)$ $\Leftrightarrow$ $M_C$ satisfies property $(w)$ to hold. Moreover, we explore certain conditions on $T\in\LB(\hh)$ and $S\in\LB(\K)$ so that the direct sum $T\oplus S$ obeys property $(w)$, where $\hh$ and $\K$ are Hilbert spaces.


1993 ◽  
Vol 114 (1) ◽  
pp. 111-130 ◽  
Author(s):  
A. Sudbery

AbstractWe construct a non-commutative analogue of the algebra of differential forms on the space of endomorphisms of a vector space, given a non-commutative algebra of functions and differential forms on the vector space. The construction yields a differential bialgebra which is a skew product of an algebra of functions and an algebra of differential forms with constant coefficients. We give necessary and sufficient conditions for such an algebra to exist, show that it is uniquely determined by the differential algebra on the vector space, and show that it is a non-commutative superpolynomial algebra in the matrix elements and their differentials (i.e. that it has the same dimensions of homogeneous components as in the classical case).


2021 ◽  
Vol 71 (6) ◽  
pp. 1375-1400
Author(s):  
Feyzi Başar ◽  
Hadi Roopaei

Abstract Let F denote the factorable matrix and X ∈ {ℓp , c 0, c, ℓ ∞}. In this study, we introduce the domains X(F) of the factorable matrix in the spaces X. Also, we give the bases and determine the alpha-, beta- and gamma-duals of the spaces X(F). We obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (ℓ p (F), ℓ ∞), (ℓ p (F), f) and (X, Y(F)) of matrix transformations, where Y denotes any given sequence space. Furthermore, we give the necessary and sufficient conditions for factorizing an operator based on the matrix F and derive two factorizations for the Cesàro and Hilbert matrices based on the Gamma matrix. Additionally, we investigate the norm of operators on the domain of the matrix F. Finally, we find the norm of Hilbert operators on some sequence spaces and deal with the lower bound of operators on the domain of the factorable matrix.


Positivity ◽  
2020 ◽  
Vol 24 (5) ◽  
pp. 1361-1372
Author(s):  
Zbigniew Bartosiewicz

Abstract It is shown that a positive linear system on a time scale with a bounded graininess is uniformly exponentially stable if and only if the characteristic polynomial of the matrix defining the system has all its coefficients positive. Then this fact is used to find necessary and sufficient conditions of positive stabilizability of a positive control system on a time scale.


2013 ◽  
Vol 860-863 ◽  
pp. 2727-2731
Author(s):  
Kai Fu Liang ◽  
Ming Jun Li ◽  
Ze Lin Zhu

Hamiltonian matrices have many applications to design automation and autocontrol, in particular in the linear-quadratic autocontrol problem. This paper studies the inverse problems of generalized Hamiltonian matrices for matrix equations. By real representation of complex matrix, we give the necessary and sufficient conditions for the existence of a Hermitian generalized Hamiltonian solutions to the matrix equations, and then derive the representation of the general solutions.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050240
Author(s):  
Xiao-Wen Zhao ◽  
Guangsong Han ◽  
Qiang Lai ◽  
Dandan Yue

The multiconsensus problem of first-order multiagent systems with directed topologies is studied. A novel consensus problem is introduced in multiagent systems — multiconsensus. The states of multiple agents in each subnetwork asymptotically converge to an individual consistent value in the presence of information exchanges among subnetworks. Linear multiconsensus protocols are proposed to solve the multiconsensus problem, and the matrix corresponding to the protocol is designed. Necessary and sufficient conditions are derived based on matrix theory, under which the stationary multiconsensus and dynamic multiconsensus can be reached. Simulations are provided to demonstrate the effectiveness of the theoretical results.


2009 ◽  
Vol 46 (04) ◽  
pp. 1038-1051 ◽  
Author(s):  
Rudolf Grübel ◽  
Paweł Hitczenko

Let (X i ) i∈ℕ be a sequence of independent and identically distributed random variables with values in the set ℕ0 of nonnegative integers. Motivated by applications in enumerative combinatorics and analysis of algorithms we investigate the number of gaps and the length of the longest gap in the set {X 1,…,X n } of the first n values. We obtain necessary and sufficient conditions in terms of the tail sequence (q k ) k∈ℕ0 , q k =P(X 1≥ k), for the gaps to vanish asymptotically as n→∞: these are ∑ k=0 ∞ q k+1/q k <∞ and limk→∞ q k+1/q k =0 for convergence almost surely and convergence in probability, respectively. We further show that the length of the longest gap tends to ∞ in probability if q k+1/q k → 1. For the family of geometric distributions, which can be regarded as the borderline case between the light-tailed and the heavy-tailed situations and which is also of particular interest in applications, we study the distribution of the length of the longest gap, using a construction based on the Sukhatme–Rényi representation of exponential order statistics to resolve the asymptotic distributional periodicities.


Sign in / Sign up

Export Citation Format

Share Document