scholarly journals Units of group rings of groups of order 16

1993 ◽  
Vol 35 (3) ◽  
pp. 367-379 ◽  
Author(s):  
E. Jespers ◽  
M. M. Parmenter

LetGbe a finite group,(ZG) the group of units of the integral group ring ZGand1(ZG) the subgroup of units of augmentation 1. In this paper, we are primarily concerned with the problem of describing constructively(ZG) for particular groupsG.This has been done for a small number of groups (see [11] for an excellent survey), and most recently Jespers and Leal [3] described(ZG) for several 2-groups. While the situation is clear for all groups of order less than 16, not all groups of order 16 were discussed in their paper. Our main aim is to complete the description of(ZG) for all groups of order 16. Since the structure of the unit group of abelian groups is very well known (see for example [10]), we are only interested in the non-abelian case.

1976 ◽  
Vol 28 (5) ◽  
pp. 954-960 ◽  
Author(s):  
César Polcino Milies

Let R be a ring with unit element and G a finite group. We denote by RG the group ring of the group G over R and by U(RG) the group of units of this group ring.The study of the nilpotency of U(RG) has been the subject of several papers.


1974 ◽  
Vol 17 (1) ◽  
pp. 129-130 ◽  
Author(s):  
Gerald Losey

Let G be a group, ZG its integral group ring and U(ZG) the group of units of ZG. The elements ±g∈U(ZG), g∈G, are called the trivial units of ZG. In this note we will proveLet G be a finite group. If ZG contains a non-trivial unit of finite order then it contains infinitely many non-trivial units of finite order.In [1] S. D. Berman has shown that if G is finite then every unit of finite order in ZG is trivial if and only if G is abelian or G is the direct product of a quaternion group of order 8 and an elementary abelian 2-group.


2017 ◽  
Vol 145 (7) ◽  
pp. 2771-2783
Author(s):  
Geoffrey Janssens ◽  
Eric Jespers ◽  
Doryan Temmerman

2008 ◽  
Vol 07 (03) ◽  
pp. 393-403 ◽  
Author(s):  
RICHARD M. LOW

Describing the group of units U(ZG) of the integral group ring ZG, for a finite group G, is a classical and open problem. In this paper, it is shown that U(Z[G × Cp]) = M ⋊ U(ZG), a semi-direct product where M is a certain subgroup of U(Z[ζ]G) and p prime. For p = 2, this structure theorem is applied to give precise descriptions of U(ZG) for a non-abelian group G of order 32, G = C10, and G = C8 × C2.


2011 ◽  
Vol 10 (04) ◽  
pp. 711-725 ◽  
Author(s):  
J. Z. GONÇALVES ◽  
D. S. PASSMAN

Let ℤG be the integral group ring of the finite nonabelian group G over the ring of integers ℤ, and let * be an involution of ℤG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (uk, m(x), uk, m(x*)) or (uk, m(x), uk, m(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ℤG.


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


1972 ◽  
Vol 15 (4) ◽  
pp. 529-534 ◽  
Author(s):  
I. Hughes ◽  
K. R. Pearson

We denote by ZG the integral group ring of the finite group G. We call ±g, for g in G, a trivial unit of ZG. For G abelian, Higman [4] (see also [3, p. 262 ff]) showed that every unit of finite order in ZG is trivial. For arbitrary finite G (indeed, for a torsion group G, not necessarily finite), Higman [4] showed that every unit in ZG is trivial if and only if G is(i) abelian and the order of each element divides 4, or(ii) abelian and the order of each element divides 6, or(iii) the direct product of the quaternion group of order 8 and an abelian group of exponent 2.


1984 ◽  
Vol 27 (3) ◽  
pp. 309-312 ◽  
Author(s):  
Jairo Zacarias Gonçalves

AbstractIn this paper we give necessary and sufficient conditions under which the group of units of a group ring of a finite group G over a field K does not contain a free subgroup of rank 2.Some extensions of this results to infinite nilpotent and FC groups are also considered.


2020 ◽  
Vol 23 (6) ◽  
pp. 931-944
Author(s):  
Sugandha Maheshwary ◽  
Inder Bir S. Passi

AbstractThe augmentation powers in an integral group ring {\mathbb{Z}G} induce a natural filtration of the unit group of {\mathbb{Z}G} analogous to the filtration of the group G given by its dimension series {\{D_{n}(G)\}_{n\geq 1}}. The purpose of the present article is to investigate this filtration, in particular, the triviality of its intersection.


Sign in / Sign up

Export Citation Format

Share Document