The Square Sieve and the Lang–Trotter Conjecture

2005 ◽  
Vol 57 (6) ◽  
pp. 1155-1177 ◽  
Author(s):  
Alina Carmen Cojocaru ◽  
Etienne Fouvry ◽  
M. Ram Murty

AbstractLet E be an elliptic curve defined over ℚ and without complex multiplication. Let K be a fixed imaginary quadratic field. We find nontrivial upper bounds for the number of ordinary primes p ≤ x for which ℚ(πp) = K, where πp denotes the Frobenius endomorphism of E at p. More precisely, under a generalized Riemann hypothesis we show that this number is OE(x17/18 log x), and unconditionally we show that this number is We also prove that the number of imaginary quadratic fields K, with −disc K ≤ x and of the form K = ℚ(πp), is ≫E log log log x for x ≥ x0(E). These results represent progress towards a 1976 Lang–Trotter conjecture.

2017 ◽  
Vol 153 (11) ◽  
pp. 2287-2309 ◽  
Author(s):  
D. R. Heath-Brown ◽  
L. B. Pierce

For any odd prime $\ell$, let $h_{\ell }(-d)$ denote the $\ell$-part of the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$. Nontrivial pointwise upper bounds are known only for $\ell =3$; nontrivial upper bounds for averages of $h_{\ell }(-d)$ have previously been known only for $\ell =3,5$. In this paper we prove nontrivial upper bounds for the average of $h_{\ell }(-d)$ for all primes $\ell \geqslant 7$, as well as nontrivial upper bounds for certain higher moments for all primes $\ell \geqslant 3$.


2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic fieldKwith good reduction at the primes abovep≥ 5 and with complex multiplication by the full ring of integersof K. In this paper, we constructp-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then provep-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


Author(s):  
Rodney I. Yager

Let ψ be the Grossencharacter attached to an elliptic curve E defined over an imaginary quadratic field K ⊂ of discriminant −dK, and having complex multiplication by the maximal order of K. We denote the conductor of ψ by and fix a Weierstrass model for E with coefficients in ,whose discriminant is divisible only by primes dividing 6. Let Kab be the abelian closure of K in and choose a fundamental period Ω ∈ for the above model of the curve.


2009 ◽  
Vol 51 (1) ◽  
pp. 187-191 ◽  
Author(s):  
YASUHIRO KISHI

AbstractWe prove that the class number of the imaginary quadratic field $\Q(\sqrt{2^{2k}-3^n})$ is divisible by n for any positive integers k and n with 22k < 3n, by using Y. Bugeaud and T. N. Shorey's result on Diophantine equations.


2014 ◽  
Vol 915-916 ◽  
pp. 1336-1340
Author(s):  
Jian Jun Hu

The Complex Multiplication (CM) method is a widely used technique for constructing elliptic curves over finite fields. The key point in this method is parameter generation of the elliptic curve and root compution of a special type of class polynomials. However, there are several class polynomials which can be used in the CM method, having much smaller coefficients, and fulfilling the prerequisite that their roots can be easily transformed to the roots of the corresponding Hilbert polynomials.In this paper, we provide a method which can construct elliptic curves by Ramanujan's class invariants. We described the algorithm for the construction of elliptic curves (ECs) over imaginary quadratic field and given the transformation from their roots to the roots of the corresponding Hilbert polynomials. We compared the efficiency in the use of this method and other methods.


2011 ◽  
Vol 63 (6) ◽  
pp. 1220-1537 ◽  
Author(s):  
Michael Baake ◽  
Rudolf Scharlau ◽  
Peter Zeiner

AbstractThe similar sublattices of a planar lattice can be classified via its multiplier ring. The latter is the ring of rational integers in the generic case, and an order in an imaginary quadratic field otherwise. Several classes of examples are discussed, with special emphasis on concrete results. In particular, we derive Dirichlet series generating functions for the number of distinct similar sublattices of a given index, and relate them to zeta functions of orders in imaginary quadratic fields.


2004 ◽  
Vol 70 (1) ◽  
pp. 125-142 ◽  
Author(s):  
Noburo Ishii

Let E be an elliptic curve with complex multiplication by R, where R is an order of discriminant D < −4 of an imaginary quadratic field K. If a prime number p is decomposed completely in the ring class field associated with R, then E has good reduction at a prime ideal p of K dividing p and there exist positive integers u and υ such that 4p = u2 – Du;2. It is well known that the absolute value of the trace ap of the Frobenius endomorphism of the reduction of E modulo p is equal to u. We determine whether ap = u or ap = −u in the case where the class number of R is 2 or 3 and D is divisible by 3, 4 or 5.


2015 ◽  
Vol 151 (9) ◽  
pp. 1585-1625 ◽  
Author(s):  
Antonio Lei ◽  
David Loeffler ◽  
Sarah Livia Zerbes

We construct an Euler system attached to a weight 2 modular form twisted by a Grössencharacter of an imaginary quadratic field $K$, and apply this to bounding Selmer groups.


Author(s):  
Wan Lee ◽  
Myungjun Yu

Let [Formula: see text] be an elliptic curve defined over a number field [Formula: see text]. Suppose that [Formula: see text] has complex multiplication over [Formula: see text], i.e. [Formula: see text] is an imaginary quadratic field. With the aid of CM theory, we find elliptic curves whose quadratic twists have a constant root number.


Sign in / Sign up

Export Citation Format

Share Document