Uniform Asymptotics for Discounted Aggregate Claims in Dependent Risk Models

2014 ◽  
Vol 51 (03) ◽  
pp. 669-684 ◽  
Author(s):  
Yang Yang ◽  
Kaiyong Wang ◽  
Dimitrios G. Konstantinides

In this paper we consider some nonstandard renewal risk models with some dependent claim sizes and stochastic return, where an insurance company is allowed to invest her/his wealth in financial assets, and the price process of the investment portfolio is described as a geometric Lévy process. When the claim size distribution belongs to some classes of heavy-tailed distributions and a constraint is imposed on the Lévy process in terms of its Laplace exponent, we obtain some asymptotic formulae for the tail probability of discounted aggregate claims and ruin probabilities holding uniformly for some finite or infinite time horizons.

2014 ◽  
Vol 51 (3) ◽  
pp. 669-684 ◽  
Author(s):  
Yang Yang ◽  
Kaiyong Wang ◽  
Dimitrios G. Konstantinides

In this paper we consider some nonstandard renewal risk models with some dependent claim sizes and stochastic return, where an insurance company is allowed to invest her/his wealth in financial assets, and the price process of the investment portfolio is described as a geometric Lévy process. When the claim size distribution belongs to some classes of heavy-tailed distributions and a constraint is imposed on the Lévy process in terms of its Laplace exponent, we obtain some asymptotic formulae for the tail probability of discounted aggregate claims and ruin probabilities holding uniformly for some finite or infinite time horizons.


2010 ◽  
Vol 42 (4) ◽  
pp. 1126-1146 ◽  
Author(s):  
Jinzhu Li ◽  
Qihe Tang ◽  
Rong Wu

Consider a continuous-time renewal risk model with a constant force of interest. We assume that claim sizes and interarrival times correspondingly form a sequence of independent and identically distributed random pairs and that each pair obeys a dependence structure described via the conditional tail probability of a claim size given the interarrival time before the claim. We focus on determining the impact of this dependence structure on the asymptotic tail probability of discounted aggregate claims. Assuming that the claim size distribution is subexponential, we derive an exact locally uniform asymptotic formula, which quantitatively captures the impact of the dependence structure. When the claim size distribution is extended regularly varying tailed, we show that this asymptotic formula is globally uniform.


2010 ◽  
Vol 42 (04) ◽  
pp. 1126-1146 ◽  
Author(s):  
Jinzhu Li ◽  
Qihe Tang ◽  
Rong Wu

Consider a continuous-time renewal risk model with a constant force of interest. We assume that claim sizes and interarrival times correspondingly form a sequence of independent and identically distributed random pairs and that each pair obeys a dependence structure described via the conditional tail probability of a claim size given the interarrival time before the claim. We focus on determining the impact of this dependence structure on the asymptotic tail probability of discounted aggregate claims. Assuming that the claim size distribution is subexponential, we derive an exact locally uniform asymptotic formula, which quantitatively captures the impact of the dependence structure. When the claim size distribution is extended regularly varying tailed, we show that this asymptotic formula is globally uniform.


Risks ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 122
Author(s):  
Franck Adékambi ◽  
Kokou Essiomle

In this paper, we derive a closed-form expression of the tail probability of the aggregate discounted claims under homogeneous, non-homogeneous and mixed Poisson risk models with constant force of interest by using a general dependence structure between the inter-occurrence time and the claim sizes. This dependence structure is relevant since it is well known that under catastrophic or extreme events the inter-occurrence time and the claim severities are dependent.


2006 ◽  
Vol 38 (03) ◽  
pp. 768-791 ◽  
Author(s):  
A. B. Dieker

We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we establish general properties of perturbed risk models, and obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive. Third, we study the tail asymptotics for the supremum of a Lévy process under different assumptions on the tail of the Lévy measure.


2018 ◽  
Vol 13 (2) ◽  
pp. 241-267
Author(s):  
Zhehao Zhang ◽  
Shuanming Li

AbstractThis paper starts with the Beta transform and discusses the stochastic ordering properties of this transform under different parameter settings. Later, the distribution of discounted aggregate claims in a compound renewal risk model with dependence between inter-claim times and claim sizes is studied. Recursive formulas for moments and joint moments are expressed in terms of the Beta transform of the inter-claim times and claim severities. Particularly, our moments formula is more explicit and computation-friendly than earlier ones in the references. Lastly, numerical examples are provided to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document