scholarly journals Asymptotic Tail Probability of the Discounted Aggregate Claims under Homogeneous, Non-Homogeneous and Mixed Poisson Risk Model

Risks ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 122
Author(s):  
Franck Adékambi ◽  
Kokou Essiomle

In this paper, we derive a closed-form expression of the tail probability of the aggregate discounted claims under homogeneous, non-homogeneous and mixed Poisson risk models with constant force of interest by using a general dependence structure between the inter-occurrence time and the claim sizes. This dependence structure is relevant since it is well known that under catastrophic or extreme events the inter-occurrence time and the claim severities are dependent.

2010 ◽  
Vol 42 (4) ◽  
pp. 1126-1146 ◽  
Author(s):  
Jinzhu Li ◽  
Qihe Tang ◽  
Rong Wu

Consider a continuous-time renewal risk model with a constant force of interest. We assume that claim sizes and interarrival times correspondingly form a sequence of independent and identically distributed random pairs and that each pair obeys a dependence structure described via the conditional tail probability of a claim size given the interarrival time before the claim. We focus on determining the impact of this dependence structure on the asymptotic tail probability of discounted aggregate claims. Assuming that the claim size distribution is subexponential, we derive an exact locally uniform asymptotic formula, which quantitatively captures the impact of the dependence structure. When the claim size distribution is extended regularly varying tailed, we show that this asymptotic formula is globally uniform.


2010 ◽  
Vol 42 (04) ◽  
pp. 1126-1146 ◽  
Author(s):  
Jinzhu Li ◽  
Qihe Tang ◽  
Rong Wu

Consider a continuous-time renewal risk model with a constant force of interest. We assume that claim sizes and interarrival times correspondingly form a sequence of independent and identically distributed random pairs and that each pair obeys a dependence structure described via the conditional tail probability of a claim size given the interarrival time before the claim. We focus on determining the impact of this dependence structure on the asymptotic tail probability of discounted aggregate claims. Assuming that the claim size distribution is subexponential, we derive an exact locally uniform asymptotic formula, which quantitatively captures the impact of the dependence structure. When the claim size distribution is extended regularly varying tailed, we show that this asymptotic formula is globally uniform.


2014 ◽  
Vol 51 (3) ◽  
pp. 669-684 ◽  
Author(s):  
Yang Yang ◽  
Kaiyong Wang ◽  
Dimitrios G. Konstantinides

In this paper we consider some nonstandard renewal risk models with some dependent claim sizes and stochastic return, where an insurance company is allowed to invest her/his wealth in financial assets, and the price process of the investment portfolio is described as a geometric Lévy process. When the claim size distribution belongs to some classes of heavy-tailed distributions and a constraint is imposed on the Lévy process in terms of its Laplace exponent, we obtain some asymptotic formulae for the tail probability of discounted aggregate claims and ruin probabilities holding uniformly for some finite or infinite time horizons.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Kaiyong Wang ◽  
Lamei Chen

Abstract We consider a dependent compound renewal risk model, where the interarrival times of accidents and the claim numbers follow a dependence structure characterized by a conditional tail probability and the claim sizes have a pairwise negatively quadrant dependence structure or a related dependence structure with the upper tail asymptotical dependence structure. When the distributions of the claim sizes belong to the dominated variation distribution class, we give the asymptotic lower and upper bounds for the precise large deviations of the aggregate claims.


2014 ◽  
Vol 51 (03) ◽  
pp. 669-684 ◽  
Author(s):  
Yang Yang ◽  
Kaiyong Wang ◽  
Dimitrios G. Konstantinides

In this paper we consider some nonstandard renewal risk models with some dependent claim sizes and stochastic return, where an insurance company is allowed to invest her/his wealth in financial assets, and the price process of the investment portfolio is described as a geometric Lévy process. When the claim size distribution belongs to some classes of heavy-tailed distributions and a constraint is imposed on the Lévy process in terms of its Laplace exponent, we obtain some asymptotic formulae for the tail probability of discounted aggregate claims and ruin probabilities holding uniformly for some finite or infinite time horizons.


2019 ◽  
Vol 293 (1) ◽  
pp. 175-192
Author(s):  
Hyunjoo Yoo ◽  
Bara Kim ◽  
Jeongsim Kim ◽  
Jiwook Jang

Sign in / Sign up

Export Citation Format

Share Document