scholarly journals Experimental study of a vortex in a magnetic field

2002 ◽  
Vol 464 ◽  
pp. 287-309 ◽  
Author(s):  
BINOD SREENIVASAN ◽  
THIERRY ALBOUSSIÈRE

It is well-known that magnetohydrodynamic (MHD) flows behave differently from conventional fluid flows in two ways: the magnetic field makes the flow field anisotropic in the sense that it becomes independent of the coordinate parallel to the field; and the flow of liquid across the field lines induces an electric current, leading to ohmic damping. In this paper, an experimental study is presented of the long-time decay of an initially three-dimensional flow structure subject to a steady magnetic field, when the ratio of the electromagnetic Lorentz forces to the nonlinear inertial forces, quantified by the magnetic interaction parameter, N0, takes large as well as moderate values. This investigation is markedly different from previous studies on quasi-two-dimensional MHD flows in thin layers of conducting fluids, where only Hartmann layer friction held the key to the dissipation of the flow.The initial ‘linear’ phase of decay of an MHD flow, characterized by dominant Lorentz forces and modelled extensively in the literature, has been observed for the first time in a laboratory experiment. Further, when N0 is large compared to unity, a distinct regime of decay of a vortex follows this linear phase. This interesting trend can be explained in terms of the behaviour of the ratio of the actual magnitudes of the Lorentz to the nonlinear inertial forces – the true interaction parameter – which decreases to a constant of order unity towards the end of the linear phase of decay, and remains invariant during a subsequent ‘nonlinear’ phase.

1980 ◽  
Vol 96 (2) ◽  
pp. 335-353 ◽  
Author(s):  
Richard J. Holroyd

A theoretical and experimental study has been carried out on the flow of a liquid metal along a straight rectangular duct, whose pairs of opposite walls are highly conducting and insulating, situated in a planar non-uniform magnetic field parallel to the conducting walls. Magnitudes of the flux density and mean velocity are taken to be such that the Hartmann numberMand interaction parameterNhave very large values and the magnetic Reynolds number is extremely small.The theory qualitatively predicts the integral features of the flow, namely the distributions along the duct of the potential difference between the conducting walls and the pressure. The experimental results indicate that the velocity profile is severely distorted by regions of non-uniform magnetic field with fluid moving towards the conducting walls; even though these walls are very good conductors the flow behaves more like that in a non-conducting duct than that predicted for a duct with perfectly conducting side walls.


1990 ◽  
Vol 216 ◽  
pp. 161-191 ◽  
Author(s):  
A. Sterl

To design self-cooled liquid metal blankets for fusion reactors, one must know about the behaviour of MHD flows at high Hartmann numbers. In this work, finite difference codes are used to investigate the influence of Hartmann number M, interaction parameter N, wall conductance ratio c, and changing magnetic field, respectively, on the flow.As liquid-metal MHD flows are characterized by thin boundary layers, resolution of these layers is the limiting issue. Hartmann numbers up to 103 are reached in the two-dimensional case of fully developed flow, while in three-dimensional flows the limit is 102. However, the calculations reveal the main features of MHD flows at large M. They are governed by electric currents induced in the fluid. Knowing the paths of these currents makes it possible to predict the flow structure.Results are shown for two-dimensional flows in a square duct at different Hartmann numbers and wall conductivities. While the Hartmann number governs the thickness of the boundary layers, the wall conductivities are responsible for the pressure losses and the structure of the flows. The most distinct feature is the side layers where the velocities can exceed those at the centre by orders of magnitude.The three-dimensional results are also for a square duct. The main interest here is to investigate the redistribution of the fluid in a region where the magnetic field changes. Large axial currents are induced leading to the ‘M-shaped’ velocity profiles characteristic of MHD flow. So-called Flow Channel Inserts (FCI), of great interest in blanket design, are investigated. They serve to decouple the load carrying wall from the currents in the fluid. The calculations show that the FCI is indeed a suitable measure to reduce the pressure losses in the blanket.


2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarek N. Abdelhameed

AbstractThis article examines the entropy generation in the magnetohydrodynamics (MHD) flow of Newtonian fluid (water) under the effect of applied magnetic in the absence of an induced magnetic field. More precisely, the flow of water is considered past an accelerated plate such that the fluid is receiving constant heating from the initial plate. The fluid disturbance away from the plate is negligible, therefore, the domain of flow is considered as semi-infinite. The flow and heat transfer problem is considered in terms of differential equations with physical conditions and then the corresponding equations for entropy generation and Bejan number are developed. The problem is solved for exact solutions using the Laplace transform and finite difference methods. Results are displayed in graphs and tables and discussed for embedded flow parameters. Results showed that the magnetic field has a strong influence on water flow, entropy generation, and Bejan number.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1870
Author(s):  
Dmitry Borin ◽  
Robert Müller ◽  
Stefan Odenbach

This paper presents the results of an experimental study of the influence of an external magnetic field on the shear flow behaviour of a magnetic fluid based on barium hexaferrite nanoplates. With the use of rheometry, the magnetoviscosity and field-dependent yield-stress in the fluid are evaluated. The observed fluid behaviour is compared to that of ferrofluids with magnetic nanoparticles having high dipole interaction. The results obtained supplement the so-far poorly studied topic of the influence of magnetic nanoparticles’ shape on magnetoviscous effects. It is concluded that the parameter determining the observed magnetoviscous effects in the fluid under study is the ratio V2/l3, where V is the volume of the nanoparticle and l is the size of the nanoparticle in the direction corresponding to its orientation in the externally applied magnetic field.


Sign in / Sign up

Export Citation Format

Share Document