scholarly journals Theta-functions and Hilbert modular forms

1978 ◽  
Vol 69 ◽  
pp. 97-106 ◽  
Author(s):  
Stephen S. Kudla

The purpose of this note is to show how the theta-functions attached to certain indefinite quadratic forms of signature (2, 2) can be used to produce a map from certain spaces of cusp forms of Nebentype to Hilbert modular forms. The possibility of making such a construction was suggested by Niwa [4], and the techniques are the same as his and Shintani’s [6]. The construction of Hilbert modular forms from cusp forms of one variable has been discussed by many people, and I will not attempt to give a history of the subject here. However, the map produced by the theta-function is essentially the same as that of Doi and Naganuma [2], and Zagier [7]. In particular, the integral kernel Ω(τ, z1, z2) of Zagier is essentially the ‘holomorphic part’ of the theta-function.

1970 ◽  
Vol 40 ◽  
pp. 173-192 ◽  
Author(s):  
Toyokazu Hiramatsu

In his lecture notes ([1, pp. 33-35], [2, pp. 145-152]), M. Eichler reduced ‘quadratic’ Hilbert modular forms of dimension —k {k is a positive integer) to holomorphic automorphic forms of dimension — 2k for the reproduced groups of indefinite ternary quadratic forms, by means of so-called Eichler maps.


2008 ◽  
Vol 128 (12) ◽  
pp. 3037-3062
Author(s):  
Sever Achimescu ◽  
Abhishek Saha

1983 ◽  
Vol 92 ◽  
pp. 1-20 ◽  
Author(s):  
Solomon Friedberg

In this paper, we use the theta function method [10] to give explicit Doi-Naganuma type maps associated to an imaginary quadratic field K, lifting cusp forms on any congruence subgroup of SL(2, Z) to forms on SL(2, C) automorphic with respect to an appropriate arithmetic discrete subgroup. The case of class number one, and form modular with respect to group Γ0(D) and character χ0 = (–D/*), where –D is the discriminant of K has been treated by Asai [1]. In order to complete his discussion, we must first introduce a more general theta function associated to an indefinite quadratic form (here of type (3, 1)), which we regard as a specialization of a symplectic theta function (see also [4]).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


Author(s):  
Matteo Tamiozzo

AbstractThe aim of this paper is to prove inequalities towards instances of the Bloch–Kato conjecture for Hilbert modular forms of parallel weight two, when the order of vanishing of the L-function at the central point is zero or one. We achieve this implementing an inductive Euler system argument which relies on explicit reciprocity laws for cohomology classes constructed using congruences of automorphic forms and special points on several Shimura curves.


Sign in / Sign up

Export Citation Format

Share Document