Absorption and Translocation of Sethoxydim with Additives

Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 657-663 ◽  
Author(s):  
John D. Nalewaja ◽  
Grzegorz A. Skrzypczak

Experiments were conducted to determine14C absorption and translocation by oat (Avena sativaL. ‘Lyon’) foliarly treated with14C-sethoxydim {(2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one)} and various additives. Safflower (Carthamus tinctoriusL.), soybean [Glycine max(L.) Merr.], linseed (Linum usitatissimumL.), and sunflower (Helianthus annuusL.) oil all similarly increased foliar absorption and translocation of14C more than palm oil (Elaeis quineensisJacq.) but less than petroleum oil, when applied without an emulsifier. An emulsifier in the oil additive tended to enhance14C absorption and translocation more in soybean oil than petroleum oil so that14C absorption and translocation were similar with both oils containing emulsifiers. Absorption and translocation of14C tended to increase more with an increase in emulsifier concentration in soybean oil than in petroleum oil but not beyond 15% with either oil. Percentage of14C absorbed and translocated from14C-sethoxydim applied to oats increased as the amount of soybean oil applied increased from 2.3 to 4.6 L/ha, but the increase was less for sethoxydim at 0.87 kg ai/ha than at 0.03 or 0.17 kg ai/ha.

Weed Science ◽  
1986 ◽  
Vol 34 (4) ◽  
pp. 572-576 ◽  
Author(s):  
John D. Nalewaja ◽  
Grzegorz A. Skrzypczak

The influence of various additives on the absorption and translocation of fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid} butyl ester in oats (Avena sativaL. var. ‘Lyon’) was determined. Fluazifop absorption and translocation by oats 48 h after application were less when applied with safflower (Carthamus tinctoriusL.), sunflower (Helianthus annuusL.), soybean [Glycine max(L.) Merr.], linseed (Linum usitatissimumL.), and palm (Eleais quineeneisJacq.) oil than with petroleum oil. However, fluazifop absorption and translocation continued to increase for the 96-h duration of the experiment when applied with soybean oil but only for 24 h when applied with petroleum oil. The14C-fluazifop-label recovery was higher when applied with oils than when applied alone, which may have been due to reduced fluazifop volatility when it was emulsified with the oils. Absorption and translocation of fluazifop applied with glycerol or various emulsifiers were equal to or less than fluazifop absorption and translocation when applied with petroleum oils but were greater than fluazifop absorption and translocation when applied with seed oils 48 h after application. Fluazifop absorption and translocation were similar whether soybean or petroleum oil additives were applied with or without emulsifiers. Totally refined seed oils only slightly increased fluazifop absorption and translocation compared to fluazifop with once-refined or degummed seed oils.


Weed Science ◽  
1988 ◽  
Vol 36 (3) ◽  
pp. 282-285 ◽  
Author(s):  
Greg R. Gillespie ◽  
Grzegor A. Skrzypczak ◽  
John D. Nalewaja

The influence of various additives on CGA-82725 [2-propanyl-2,4-(3,5-dichloro-2-pyridyloxy)phenoxy propanoate] absorption and translocation was determined in oats (Avena sativa L. ‘Lyon’). The absorption and translocation of 14C was greater when 14C-CGA-82725 was applied with petroleum oil compared to soybean [Glycine max (L.) Merr.] oil. The translocation of 14C was greater at 96 than 48 h after 14C-CGA-82725 application. The absorption of 14C was greater at 48 than 24 h but was similar at 48 and 96 h after 14C-CGA-82725 application with no additive, petroleum oil, or soybean oil. The absorbed and translocated 14C was greater when 14C-CGA-82725 was applied with oil at 1.2 compared to 0.6 L/ha. No additional increase in 14C absorption and translocation was obtained if the oil volume was increased to 2.3 L/ha. The addition of petroleum oil to 14C-CGA-82725 increased 14C absorption and translocation more than the addition of palm (Eleais quineeneis Jalq.), safflower (Carthamus tinctorius L.), linseed (Linum usitatissimum L.), or soybean oil. The four seed oils and the emulsifier At Plus 300F caused similar increases in 14C absorption and translocation over 14C-CGA-82725 applied alone. Ethylene glycol did not increase 14C absorption and translocation compared to 14C-CGA-82725 applied alone.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 485d-485
Author(s):  
A.L. Lancaster ◽  
D.E. Deyton ◽  
C.E. Sams ◽  
C.D. Pless ◽  
D.C. Fare ◽  
...  

Research was conducted to determine if soybean oil sprays may substitute for petroleum oil for control of insects on nursery crops. Dormant field-grown `Globe' arborvitae shrubs infested with Fletcher scale were sprayed on 9 Mar. 1997 with 0%, 2%, 3%, or 4% soybean oil. One hundred scales per plant were evaluated on 4 Apr. 1997. Spraying 2% to 4% soybean oil on dormant arborvitae caused ≥97% mortality of Fletcher scale compared to only 7% mortality on untreated plants. of white pine, viburnum, `Anthony Waterer' spirea, `Green Beauty' boxwood, western red cedar, `Blue Star' juniper, `Blue Pacific' juniper, `Japanese Garden' juniper, and arborvitae plants in trade gallon pots and `Densiformus' yew and dwarf `Alberta' spruce in trade quart pots were sprayed with 0% (water control), 1%, or 2% soybean oil (emulsified with Latron B-1956) or 2% SunSpray Ultra-Fine Spray oil on 26 Aug. 1997 for phytotoxicity evaluation. No phytotoxicity occurred on western cedar, spirea, boxwood, yew, arborvitae, or viburnum. Spraying Sunspray or soybean oil caused initial loss of blue color on blue junipers and white pine. Spraying 1 or 2% soybean oil or 2% SunSpray caused phytotoxicity to `Blue Star' juniper. The `Blue Pacific' juniper, `Japanese Garden' juniper, and Alberta spruce were slightly damaged by 2% but not by 1% soybean oil.


2014 ◽  
Vol 62 (15) ◽  
pp. 3453-3457 ◽  
Author(s):  
Catherine M. Kramer ◽  
Karen L. Launis ◽  
Maret G. Traber ◽  
Dennis P. Ward

Author(s):  
J. E. M. Mordue

Abstract A description is provided for Sclerotinia sclerotiorum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: The fungus is plurivorous; hosts include Brassica oleracea var. capitata, B. chinensis, Helianthus annuus, Phaseolus vulgaris, Arachis hypogaea, Carthamus tinctorius, Citrus, Coriandrum sativum, Cucumis melo, Curcurbita pepo, Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Lactuca saliva, Hibiscus sabdariffa, Cucumis sativus. DISEASE: The fungus causes dieases with several common names, e.g. cottony soft rot, white mould and watery soft rot. It is generally more important as a pathogen of vegetables in the field, during transit and in store. Woody plants, grasses and cereals are rarely attacked. Crops attacked include: cabbage (Brassica oleracea var. capitata and B. chinensis; 4, 713; 37, 611; 39, 515; 51, 2958); sunflower (Helianthus annuus; 3, 274; 4, 289; 8, 246; 38, 9; 43, 2012; 50, 3095; 51, 3486; 54, 4600; 55, 2832); common bean (Phaseolus vulgaris; 1, 116; 25, 592; 33, 401; 34, 425; 40, 446; 51, 870; 52, 531; 53, 731, 2373, 4183; 54, 4252, 4694; 55, 970); groundnut (Arachis hypogaea; 53, 3708); safflower (Carthamus tinctorius; 3, 650); citrus (Citrus spp. ; 24, 500; 43, 2910); coriander (Coriandrum sativum; 43, 2373); melon (Cucumis melo; 50, 1543; 53, 1109); squash (Curcurbitapepo; 50, 446); soyabean (Glycine max; 52, 3485; 53, 335, 336) tomato (Lycopersicon esculentum; 33, 56); tobacco (Nicotiana tabacum; 12, 729; 14, 126; 38, 279; 39, 46; 55, 2355); lettuce (Lactuca saliva; 16, 13); roselle (Hibiscus sabdariffa; 14, 106); cucumber (Cucumis sativus; 55, 2953). Most plant parts, above and at soil level, of herbaceous crops can be attacked at any age. The first symptoms are frequently the collapse of the plant due to stem infection near the soil. A soft rot develops, followed by the conspicuous, external white mycelium and the sclerotia which are often formed in the pith. Infections which arise at some height above soil level frequently begin from withering or fallen petals, infected by ascospores. GEOGRAPHICAL DISTRIBUTION: Very widespread but the disease is one of relatively cool moist conditions. In the Mediterranean area little or no disease occurs in the summer (31, 250; 43, 14). TRANSMISSION: Air-borne ascospores are the most important means of spread (12, 193; 33, 56, 401; 37, 611; 42, 527; 54, 4252, 4694; 55, 442, 970). The sclerotia (from which the apothecia arise) are the primary survival structures, in soil and host debris. Survival time is very variable but can be high after 3 years in soil (42, 244; 43, 2756; 45, 818; 50, 1621; 52, 3956; 54, 3712, 4252; Hoes, Phytopathology 65: 1431, 1975). Mycelium from sclerotia can also cause infection. Seed may be an infective source, either from contaminating sclerotia or internal mycelium (38, 169; 43, 1376; 47, 1998; 51, 3487; 52, 3485; 53, 335, 336).


1970 ◽  
Vol 62 (6) ◽  
pp. 731-736 ◽  
Author(s):  
Renato Sant'Anna ◽  
A. J. Ohlrogge ◽  
J. E. Christian ◽  
C. E. Breckinridge

2019 ◽  
Vol 25 (2) ◽  
pp. 209-217 ◽  
Author(s):  
E Ike

In fluid transport, precise knowledge or estimation of fluids behaviour is very necessary, for mass flow and heat transfer computations. In this study, physicochemical analysis of palm oil and soybean oil were conducted, in addition to an equation modeling the relationship between the energy (Ea) and the pre-exponential factor (A). Later, two other parameters; the Arrhenius temperature (T) and Arrhenius activation temperature (T*) were introduced to buttress the veracity of the model used. The model is very useful in engineering since it would make for the estimation of the missing parameter value and its derivatives. The goodness of the result is strongly reinforced by the regression coefficient. The results indicate that the model which best fits the major defining parameters are logarithmic in nature. All the parameters studied showed that the two oil samples are good feedstock for biodiesel production and confirms their relevance in electric voltage transformers.Keywords: Physicochemical, Viscosity, Arrhenius Parameters, Equation Modeling, Temperature, Vegetable Oil


Sign in / Sign up

Export Citation Format

Share Document