Effect of Crop Species, Tillage, and Rye (Secale cereale) Mulch on Sicklepod (Senna obtusifolia)

Weed Science ◽  
1996 ◽  
Vol 44 (1) ◽  
pp. 133-136 ◽  
Author(s):  
Barry J. Brecke ◽  
Donn G. Shilling

Field studies were conducted to determine the effect of crop species, tillage, and rye mulch on sicklepod growth. Competition from soybean and sunflower reduced sicklepod biomass by 19 and 77%, respectively. Sicklepod height was reduced by rye mulch. Rye root residue caused 49% reduction in sicklepod biomass, while whole plant rye mulch reduced weed growth an additional 12%. Crop competition reduced sicklepod shoot biomass to a greater extent when rye residue was present. Crop seed yield was 32% lower in tilled plots compared with no-tillage due to more weed competition in the tilled plots. In the presence of rye root residue, soybean yield showed a two-fold increase over no mulch or whole plant rye mulch. Sunflower yield increased by 30% in the presence of rye residue compared with no mulch.

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Siles ◽  
Kirsty L. Hassall ◽  
Cristina Sanchis Gritsch ◽  
Peter J. Eastmond ◽  
Smita Kurup

Seed yield is a complex trait for many crop species including oilseed rape (OSR) (Brassica napus), the second most important oilseed crop worldwide. Studies have focused on the contribution of distinct factors in seed yield such as environmental cues, agronomical practices, growth conditions, or specific phenotypic traits at the whole plant level, such as number of pods in a plant. However, how female reproductive traits contribute to whole plant level traits, and hence to seed yield, has been largely ignored. Here, we describe the combined contribution of 33 phenotypic traits within a B. napus diversity set population and their trade-offs at the whole plant and organ level, along with their interaction with plant level traits. Our results revealed that both Winter OSR (WOSR) and Spring OSR (SOSR); the two more economically important OSR groups in terms of oil production; share a common dominant reproductive strategy for seed yield. In this strategy, the main inflorescence is the principal source of seed yield, producing a good number of ovules, a large number of long pods with a concomitantly high number of seeds per pod. Moreover, we observed that WOSR opted for additional reproductive strategies than SOSR, presenting more plasticity to maximise seed yield. Overall, we conclude that OSR adopts a key strategy to ensure maximal seed yield and propose an ideal ideotype highlighting crucial phenotypic traits that could be potential targets for breeding.


2019 ◽  
Vol 50 (6) ◽  
Author(s):  
Mohammed & et al.

In order to investigate the effect of no tillage compared with the conventional cultivation and phosphorus fertilization (100, 200 and 300 kg ha-1) P2O5 to the weeds grown in the sunflower field variety Aqmar, a field trial was conducted at the experimental farm (alternative site of College of Agriculture- University of Baghdad) Abu- Ghraib during the spring and fall seasons of 2015. the experiment was carried –out by using R.C.B.D. with in split-split arrangement. The results revealed that un ploughed and un weedy treatments had the lowest means of the dry weight and seeds yield. The results, also revealed a significant increase in the weed density, weed dry weight, seeds yield and its components with the increasing of phosphorus fertilizer from 100 to 300 kg ha-1 in both seasons. It can be concluded, that growing sunflower with was reduced the weed density and its distribution in the field, and this caused to zero weed competition reduction to the crop and consequently increased the seeds yield and its components. However, increased phosphor fertilizer levels raised weeds density, their dry weight and seed yield of sunflower.


1995 ◽  
Vol 9 (2) ◽  
pp. 339-342 ◽  
Author(s):  
Donn G. Shilling ◽  
Barry J. Brecke ◽  
Clifton Hiebsch ◽  
Gregory MacDonald

Field studies were conducted to determine the effect of soybean cultivar, tillage, and rye mulch on sicklepod growth. Early-season sicklepod height was not affected by tillage or mulch. Sicklepod was tallest when grown with ‘Centennial’ or ‘Biloxi,’ the tallest cultivars, and shortest when grown with a dwarf isoline of ‘Tracy M,’ the shortest cultivar. Soybean competition reduced early-season weed density by 30 to 50%, depending on the cultivar. Centennial and dwarf Tracy M caused a 30% reduction in early-season sicklepod biomass while ‘Sharkey’ and Biloxi reduced sicklepod growth by 40%. By late-season, sicklepod biomass reduction ranged from 18% (Tracy M) to 55% (Biloxi) and was directly related to soybean cultivar height. Mulch or no-tillage independently reduced sicklepod biomass.


1990 ◽  
Vol 70 (1) ◽  
pp. 237-245 ◽  
Author(s):  
R. E. BLACKSHAW ◽  
H.-H. MUENDEL ◽  
D. A. DERKSEN

Field studies were conducted in 1986, 1987 and 1988 at Lethbridge, Alberta and in 1987 and 1988 at Indian Head, Saskatchewan to determine herbicides suitable for selective control of weeds in safflower (Carthamus tinctorius L.). Safflower exhibited acceptable tolerance to trifluralin, ethalfluralin, sethoxydim, fluazifop-p-butyl, clethodim, diclofop methyl, difenzoquat, imazamethabenz, chlorsulfuron, thiameturon, metsulfuron and DPX-A7881 over all years and locations. These herbicides offer the grower the option of preplant incorporated or postemergent herbicide application or a combination of the two. A mixture of thiameturon plus DPX-L5300 caused severe injury to safflower, reducing yield, oil content, and seed weight. Desmedipham, phenmedipham, and mixtures of these herbicides injured safflower at Lethbridge but not at Indian Head. Weeds reduced safflower yield by 39–73% over the 3 yr of the study. Control of weeds in safflower is essential to obtain optimum yields.Key words: Crop tolerance, seed yield, oil content, seed weight, weed competition


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 442B-442
Author(s):  
Christine Crosby ◽  
Hector Valenzuela ◽  
Bernard Kratky ◽  
Carl Evensen

In the tropics, weed control is a year-round concern. The use of cover crops in a conservation tillage system allows for the production of a crop biomass that can be killed and mowed, and later used as mulching material to help reduce weed growth. This study compared yields of three vegetable species grown in two conventional tillage systems, one weeded and one unweeded control, and in two no-tillage treatments using two different cover crop species, oats (Avena sativa L. `Cauyse') and rye grain (Secale cereale L.). The cover crops were seeded (112 kg/ha) in Spring 1998 in 4 × 23-m plots in a RCB design with six replications per treatment, and mowed down at the flowering stage before transplanting the seedlings. Data collection throughout the experimental period included quadrant weed counts, biomass levels, and crop marketable yields. Weed suppression was compared with the yields of the vegetable crops. The greatest vegetable yields were in the conventionally hand-weeded control and the worst in the un-weeded controls. Weed species composition varied depending on the cover crop species treatment. The rye better suppressed weed growth than the oats, with greater control of grass species. Rye, however, suppressed romaine and bell pepper yields more than the oat treatments. Similarly greater eggplant yields and more fruit per plant were found in the oat treatment than in the rye. Both cover crops suppressed weed growth for the first month; however, by the second month most plots had extensive weed growth. This study showed that at the given cover crop seeding rate, the mulch produced was not enough to reduce weed growth and provide acceptable yields of various vegetable crops.


Author(s):  
A.J. Cresswell

This paper, as well as being a testimonial to the benefit the writer has received from the Grassland Association, shows how the knowledge of scientists has been used to increase lucerne seed yields by methods of growing resistant cultivars especially for seed production as opposed to growing for hay, silage or grazing. It shows how new cultivars can be multiplied quickly by growing two crops in one year, one in each hemisphere, by using low seeding rates, wide plant spacing and very good weed control. Increased flowering of the crop has been achieved by the use of boron and the choice of time of closing; better pollination has been achieved by the use of more efficient bees - two varieties of which have been imported from North America. Weed and insect pest control and the use of a desiccant at harvest are contributing to a four-fold increase in seed yield, which should double again soon,


1992 ◽  
Vol 40 (5) ◽  
pp. 457 ◽  
Author(s):  
SC Wong ◽  
PE Kriedemann ◽  
GD Farquhar

Four eucalypt species were selected to represent two ecologically disparate groups which would be expected to contrast in seedling vigour and in the nature of growth responses to CO2 × nitrogen supply. Eucalyptus camaldulensis and E. cypellocarpa were taken as examples of fast-growing species with a wide distribution, that develop into large trees. By contrast, E. pauciflora and E. pulverulenta become smaller trees, and show a more limited distribution. Seedlings were established in pots (5 L) of a loamy soil and supplied with nutrient solution containing either 1.2 or 6.0 mM NO3- in both ambient (33 Pa) and CO2-enriched (66 Pa) greenhouses. Analysis of growth response to treatments (2 × 2 factorial) was based on destructive harvest of plants sampled on four occasions over 84 days for E. carnaldulensis and E. cypellocarpa, and 100 days for E. pulverulenta and E. pauciflora. A positive CO2 × N interaction on plant dry mass and leaf area was expressed in all species throughout the study period. In E. carnaldulensis and E. cypellocarpa, plant mass was doubled by high N at 33 Pa CO2, compared with a three to four-fold increase at 66 Pa to reach 34g by final harvest. In E. pulverulenta and E. pauciflora, slower growth resulted in about 50% less mass at a given age, but relative increases due to CO2 and N were of a similar order. A distinction can be made between N and CO2 effects on growth processes as follows. When trees were grown on low N, elevated CO2 increased nitrogen-use efficiency (NUE) at both leaf and whole plant levels. On high N, leaf NUE was increased in E. camaldulensis and E. cypellocarpa, but decreased in E. pulverulenta and E. pauciflora. Whole plant NUE showed no consistent response to elevated CO2 when plants were supplied high N. Net assimilation rate (NAR) was increased by elevated CO2 in all species on either N treatment. Moreover, high N increased NAR under either CO2 treatment in all species. There was a positive N × CO2 interaction on NAR in E. carnaldulensis and E. cypellocarpa, but not in E. pulverulenta and E. pauciflora. Growth indices for E. carnaldulensis and E. cypellocarpa species, and especially E. carnaldulensis, generally exceeded those for E. pulverulenta and E. pauciflora in terms of NAR, leaf NUE, N-enhancement of CO2 effects on leaf area and biomass, and non-structural carbohydrate content of foliage.


1996 ◽  
Vol 121 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Ursula Schuch ◽  
Richard A. Redak ◽  
James Bethke

Six cultivars of poinsettia (Euphorbia pulcherrima Wind.), `Angelika White', `Celebrate 2', `Freedom Red', `Lilo Red', `Red Sails', and `Supjibi Red' were grown for 9 weeks during vegetative development under three constant-feed fertilizer treatments, 80,160, or 240 mg N/liter and two irrigation regimes, well-watered (high irrigation) or water deficient (low irrigation). Plants fertilized with 80 or 240 mg N/liter were 10% to 18% shorter, while those fertilized with 160 mg N/liter were 25 % shorter with low versus high irrigation. Leaf area and leaf dry weight increased linearly in response to increasing fertilizer concentrations. Low irrigation reduced leaf area, leaf, stem, and shoot dry weight 3670 to 41%. Cultivars responded similarly to irrigation and fertilizer treatments in all components of shoot biomass production and no interactions between the main effects and cultivars occurred. Stomatal conductance and transpiration decreased with increasing fertilizer rates or sometimes with low irrigation. Highest chlorophyll contents occurred in leaves of `Lilo Red' and `Freedom Red'. Leaves of plants fertilized with 80 mg N/liter were deficient in leaf N and had 40 % to 49 % lower leaf chlorophyll content compared to plants fertilized with 160 or 240 mg N/liter. Irrigation had no effect on leaf N or chlorophyll content. At the end of the experiment leaves of `Supjibi Red' and `Angelika White' contained higher concentrations of soluble proteins than the other four cultivars.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pietro Sica ◽  
Francesco Scariolo ◽  
Aline Galvao ◽  
Domiziana Battaggia ◽  
Carlo Nicoletto ◽  
...  

Common bean (Phaseolus vulgaris L.) is an essential source of food proteins and an important component of sustainable agriculture systems around the world. Thus, conserving and exploiting the genetic materials of this crop species play an important role in achieving global food safety and security through the preservation of functional and serependic opportunities afforded by plant species diversity. Our research aimed to collect and perform agronomic, morpho-phenological, molecular-genetic, and nutraceutical characterizations of common bean accessions, including lowland and mountain Venetian niche landraces (ancient farmer populations) and Italian elite lineages (old breeder selections). Molecular characterization with SSR and SNP markers grouped these accessions into two well-separated clusters that were linked to the original Andean and Mesoamerican gene pools, which was consistent with the outputs of ancestral analysis. Genetic diversity in the two main clusters was not distributed equally the Andean gene pool was found to be much more uniform than the Mesoamerican pool. Additional subdivision resulted in subclusters, supporting the existence of six varietal groups. Accessions were selected according to preliminary investigations and historical records and cultivated in two contrasting Venetian environments: sea-level and mountain territories. We found that the environment significantly affected some nutraceutical properties of the seeds, mainly protein and starch contents. The antioxidant capacity was found significantly greater at sea level for climbing accessions and in the mountains for dwarf accessions. The seed yield at sea level was halved than mountain due to a seeds reduction in weight, volume, size and density. At sea level, bean landraces tended to have extended flowering periods and shorter fresh pod periods. The seed yield was positively correlated with the length of the period during which plants had fresh pods and negatively correlated with the length of the flowering period. Thus, the agronomic performance of these genetic resources showed their strong connection and adaptation to mountainous environments. On the whole, the genetic-molecular information put together for these univocal bean entries was combined with overall results from plant and seed analyses to select and transform the best accessions into commercial varieties (i.e., pure lines) suitable for wider cultivation.


Sign in / Sign up

Export Citation Format

Share Document