scholarly journals Rotation Effects in the Nongravitational Parameters of Comets

1972 ◽  
Vol 45 ◽  
pp. 294-300 ◽  
Author(s):  
Z. Sekanina

The effects of rotation of a cometary nucleus on the character of nongravitational parameters are discussed. It is suggested that the change of a nongravitational acceleration to deceleration (and vice versa) may be related to a precessional motion of the nucleus, or to secular variations in the lag angle coupled with severe orbital modifications.

2006 ◽  
Vol 2 (S236) ◽  
pp. 135-140
Author(s):  
Pulat B. Babadzhanov ◽  
Iwan P. Williams

AbstractThe existence of an observed meteor shower associated with some Near-Earth Asteroid (NEA) is one of the few useful criteria that can be used to indicate that such an object could be a candidate for being regarded as an extinct or dormant cometary nucleus. In order to identify possible new NEA-meteor showers associations, the secular variations of the orbital elements of the NEA 2000 PG3, with comet-like albedo (0.02), and moving on a comet-like orbit, was investigated under the gravitational action of the Sun and six planets (Mercury to Saturn) over one cycle of variation of the argument of perihelion. The theoretical geocentric radiants and velocities of four possible meteor showers associated with this object are determined. Using published data, the theoretically predicted showers were identified with the night-time September Northern and Southern δ-Piscids fireball showers and several fireballs, and with the day-time meteor associations γ-Arietids and α-Piscids. The character of the orbit and low albedo of 2000 PG3, and the existence of observed meteor showers associated with 2000 PG3 provide evidence supporting the conjecture that this object may be of cometary nature.


1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


1999 ◽  
Vol 173 ◽  
pp. 381-387
Author(s):  
M. Królikowska ◽  
G. Sitarski ◽  
S. Szutowicz

AbstractThe nongravitational motion of five “erratic” short-period comets is studied on the basis of published astrometric observations. We present the precession models which successfully link all the observed apparitions of the comets: 21P/Giacobini-Zinner, 31P/Schwassmann-Wachmann 2, 32P/Comas Solá, 37P/Forbes, and 43P/Wolf-Harrington. We used the Sekanina's forced precession model of the rotating cometary nucleus to include the nongravitational terms into equations of the comet's motion. Values of six basic parameters (four connected with the rotating comet nucleus and two describing the precession of spin-axis of the nucleus) have been determined along the orbital elements from positional observations of the comets. The solutions were derived with additional assumptions which introduce instantaneous changes of modulus of reactive force,Aand of maximum of cometary activity with respect to perihelion time. The present precession models impose some contraints on sizes and rotational periods of cometary nuclei. According to our solutions the nucleus of 21P/Giacobini-Zinner with oblateness along the spin-axis of about 0.32 (equatorial to polar radius of 1.46) is the most oblate among five investigated comets.


1999 ◽  
Vol 173 ◽  
pp. 365-370
Author(s):  
Kh.I. Ibadinov

AbstractFrom the established dependence of the brightness decrease of a short-period comet dependence on the perihelion distance of its orbit it follows that part of the surface of these cometary nuclei gradually covers by a refractory crust. The results of cometary nucleus simulation show that at constant insolation energy the crust thickness is proportional to the square root of the insolation time and the ice sublimation rate is inversely proportional to the crust thickness. From laboratory experiments resulted the thermal regime, the gas productivity of the nucleus, covering of the nucleus by the crust, and the tempo of evolution of a short-period comet into the asteroid-like body studied.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Author(s):  
Sterling McBride ◽  
Ricardo Burdisso ◽  
Corina Sandu

ABSTRACT Tire-pavement interaction noise (TPIN) is one of the main sources of exterior noise produced by vehicles traveling at greater than 50 kph. The dominant frequency content is typically within 500–1500 Hz. Structural tire vibrations are among the principal TPIN mechanisms. In this work, the structure of the tire is modeled and a new wave propagation solution to find its response is proposed. Multiple physical effects are accounted for in the formulation. In an effort to analyze the effects of curvature, a flat plate and a cylindrical shell model are presented. Orthotropic and nonuniform structural properties along the tire's transversal direction are included to account for differences between its sidewalls and belt. Finally, the effects of rotation and inflation pressure are also included in the formulation. Modeled frequency response functions are analyzed and validated. In addition, a new frequency-domain formulation is presented for the computation of input tread pattern contact forces. Finally, the rolling tire's normal surface velocity response is coupled with a boundary element model to demonstrate the radiated noise at the leading and trailing edge locations. These results are then compared with experimental data measured with an on-board sound intensity system.


Author(s):  
D. Bockelée-Morvan ◽  
Gianrico Filacchione ◽  
Kathrin Altwegg ◽  
Eleonora Bianchi ◽  
Martin Bizzarro ◽  
...  

AbstractWe describe the AMBITION project, a mission to return the first-ever cryogenically-stored sample of a cometary nucleus, that has been proposed for the ESA Science Programme Voyage 2050. Comets are the leftover building blocks of giant planet cores and other planetary bodies, and fingerprints of Solar System’s formation processes. We summarise some of the most important questions still open in cometary science and Solar System formation after the successful Rosetta mission. We show that many of these scientific questions require sample analysis using techniques that are only possible in laboratories on Earth. We summarize measurements, instrumentation and mission scenarios that can address these questions. We emphasize the need for returning a sample collected at depth or, still more challenging, at cryogenic temperatures while preserving the stratigraphy of the comet nucleus surface layers. We provide requirements for the next generation of landers, for cryogenic sample acquisition and storage during the return to Earth. Rendezvous missions to the main belt comets and Centaurs, expanding our knowledge by exploring new classes of comets, are also discussed. The AMBITION project is discussed in the international context of comet and asteroid space exploration.


Sign in / Sign up

Export Citation Format

Share Document