scholarly journals Possible Contributions of Supernova Remnants to the Soft X-ray Diffuse Background (0.1 - 1 keV)

1983 ◽  
Vol 101 ◽  
pp. 361-365
Author(s):  
W. T. Sanders ◽  
D. N. Burrows ◽  
D. McCammon ◽  
W. L. Kraushaar

Almost all of the B band (0.10–0.19 keV) and C band (0.15–0.28 keV) X-rays probably originate in a hot region surrounding the Sun, which Cox and Anderson have modeled as a supernova remnant. This same region may account for a significant fraction of the M band (0.5–1 keV) X-rays if the nonequilibrium models of Cox and Anderson are applicable. A population of distant SNR similar to the local region, with center-to-center spacing of about 300 pc, could provide enough galactic M band emission to fill in the dip in the count rate in the galactic plane that would otherwise be present due to absorption of both the extra-galactic power law flux and any large-scale-height stellar (or galactic halo) emission.

1970 ◽  
Vol 37 ◽  
pp. 406-407
Author(s):  
M. J. Rees

Below 1 keV, analyses of X-ray background data are complicated by galactic absorption effects, which cause the received intensity to vary with galactic latitude. Bowyer et al. (1968) observed that the diffuse background did not fall off as rapidly as was expected towards the galactic plane. One plausible interpretation of their data would be to suppose that a significant flux of soft X-rays emanates from the disc itself. I wish to discuss what could be inferred about the latter component from improved observations of its latitude-dependence, and by indirect methods.


2011 ◽  
Vol 7 (S284) ◽  
pp. 183-192
Author(s):  
Q. Daniel Wang

AbstractGalactic X-ray emission is a manifestation of various high-energy phenomena and processes. The brightest X-ray sources are typically accretion-powered objects: active galactic nuclei and low- or high-mass X-ray binaries. Such objects with X-ray luminosities of ≳ 1037 ergs s−1 can now be detected individually in nearby galaxies. The contributions from fainter discrete sources (including cataclysmic variables, active binaries, young stellar objects, and supernova remnants) are well correlated with the star formation rate or stellar mass of galaxies. The study of discrete X-ray sources is essential to our understanding of stellar evolution, dynamics, and end-products as well as accretion physics. With the subtraction of the discrete source contributions, one can further map out truly diffuse X-ray emission, which can be used to trace the feedback from active galactic nuclei, as well as from stars, both young and old, in the form of stellar winds and supernovae. The X-ray emission efficiency, however, is only about 1% of the energy input rate of the stellar feedback alone. The bulk of the feedback energy is most likely gone with outflows into large-scale galactic halos. Much is yet to be investigated to comprehend the role of such outflows in regulating the ecosystem, hence the evolution of galaxies. Even the mechanism of the diffuse X-ray emission remains quite uncertain. A substantial fraction of the emission cannot arise directly from optically-thin thermal plasma, as commonly assumed, and most likely originates in its charge exchange with neutral gas. These uncertainties underscore our poor understanding of the feedback and its interplay with the galaxy evolution.


1970 ◽  
Vol 37 ◽  
pp. 216-237
Author(s):  
James E. Felten

This is a critical review of theories of known discrete X-ray sources. The Crab is omitted, having been dealt with in Woltjer's review. Two of the identified sources, Sco X-1 and Cyg X-2, seem to be of the same sort. A binary or gas-stream model like that of Prendergast and Burbidge, with dimension R ∼ 109 cm and density n ∼ 1016 cm−3, appears reconcilable with the observed features of these sources, though much detailed work remains to be done. Neither object is yet known to be binary. Theoretical work becomes more difficult if, as appears to be the case at least for Sco X-1, the objects are optically thick due to electron scattering; this may affect the optical and X-ray spectra.The recent searches for iron lines in the X-ray spectrum of Sco X-1 are reviewed briefly. The calculations and the energy resolution are not yet good enough to make this a dependable test of models.Several possibilities are offered for explaining the excess radio flux from Sco X-1.Other theories of Sco X-1-type sources are discussed briefly. The theory of Manley and Olbert seems a little superfluous when the gas-stream theory is still in a strong position.There are serious discrepancies between X-ray and optical estimates of the distance to Sco X-1. 21-cm measurements must also be considered. The situation is reviewed, and ways out of the difficulty are discussed.Cen X-2 seems to be like Sco X-1, but several other unidentified sources have hard spectra like the Crab. It is tempting to speculate that most of the galactic sources are supernova remnants.The extended γ-ray source in the galactic plane may be the extrapolated unresolved sum of galactic X-ray sources, as suggested by Ogelman. There are several other possibilities.M87 is the only established extragalactic source. Radio, optical and X-ray observations are summarized and graphed. A power-law extrapolation to the X-ray band is far from mandatory; nevertheless the optical flux from the jet is known to be synchrotron radiation. The time-scale difficulties in the jet are described, and several theories of the survival of the optical electrons are reviewed.Processes for producing X-rays other than thermal bremsstrahlung and synchrotron radiation are listed. These other processes are characterized by low efficiency, and are likely to be unimportant in discrete sources, though several have attracted attention with reference to the diffuse background.


1998 ◽  
Vol 188 ◽  
pp. 117-120
Author(s):  
R. Petre ◽  
J. Keohane ◽  
U. Hwang ◽  
G. Allen ◽  
E. Gotthelf

The suggestion that the shocks of supernova remnants (SNR's) are cosmic ray acceleration sites dates back more than 40 years. While observations of nonthermal radio emission from SNR shells indicate the ubiquity of GeV cosmic ray production, there is still theoretical debate about whether SNR shocks accelerate particles up to the well-known “knee” in the primary cosmic ray spectrum at ~3,000 TeV. Recent X-ray observations of SN1006 and other SNR's may have provided the missing observational link between SNR shocks and high energy cosmic ray acceleration. We discuss these observations and their interpretation, and summarize our ongoing efforts to find evidence from X-ray observations of cosmic ray acceleration in the shells of other SNR's.


1996 ◽  
Vol 145 ◽  
pp. 323-331 ◽  
Author(s):  
Zhenru Wang

The oldest historical supernova (SN), recorded by ancient Chinese in 14th Century B.C. on pieces of tortoise shells or bones, is identified with the aid of modern space γ-ray observations. Hard X-rays with energy up to 20 keV were observed from IC 443 by the X-ray satellite Ginga. We infer from these observations the age of IC 443 is ∼ 1000 — 1400 yrs. The result supports the hypothesis that IC 443 is the remnant of the historical SN 837 that occurred during the Tang Dynasty. The association between the supernova remnant (SNR) CTB 80 and SN 1408 has been hotly debated for about ten years and is briefly reviewed and discussed here. A new picture is presented to explain this association. High energy emission from historical SNRs can persist in a multiphase interstellar medium (ISM). As a result, the study of the relationship between SNRs and ancient guest stars has gained new vitality.


2017 ◽  
Vol 608 ◽  
pp. A23 ◽  
Author(s):  
V. Doroshenko ◽  
G. Pühlhofer ◽  
A. Bamba ◽  
F. Acero ◽  
W. W. Tian ◽  
...  

We report on the analysis of XMM-Newton observations of the non-thermal shell-type supernova remnant HESS J1731−347 (G353.6-0.7). For the first time the complete remnant shell has been covered in X-rays, which allowed direct comparison with radio and TeV observations. We carried out a spatially resolved spectral analysis of XMM-Newton data and confirmed the previously reported non-thermal power-law X-ray spectrum of the source with negligible variations of spectral index across the shell. On the other hand, the X-ray absorption column is strongly variable and correlates with the CO emission thus confirming that the absorbing material must be in the foreground and reinforcing the previously suggested lower limit on distance. Finally, we find that the X-ray emission of the remnant is suppressed towards the Galactic plane, which points to lower shock velocities in this region, likely due to the interaction of the shock with the nearby molecular cloud.


2012 ◽  
Vol 10 (H16) ◽  
pp. 583-585
Author(s):  
J. Rho ◽  
M. Andersen ◽  
A. Tappe ◽  
H. Gomez ◽  
M. Smith ◽  
...  

AbstractSupernovae (SNe) produce, fragment and destroy dust, molecules and nucleosynthetic elements, and reshape and modify the ISM. I will review recent infrared observations of supernova remnants (SNRs) and SNe which show that SNe are important sites of dust and molecule formation and are major dust creators in the Universe. Detection of carbon monoxide (CO) fundamental band from the young SNR Cas A indicates that astrochemical processes in SNRs interacting with molecular clouds provide astrophysical laboratories to study evolution of the ISM returning material from dense clouds into the more diffuse medium and galactic halo. Two dozen SNRs are known to be interacting with molecular clouds using H2 and millimeter observations. Recent Spitzer, Herschel and SOFIA observations along with ground-based observations have greatly advanced our understanding shock processing and astrochemistry of dust, H2, high J CO, and other neutral and ionized molecules and polycyclic aromatic hydrocarbon (PAH). Ionized molecules and warm layer of molecules that are excited by UV radiation, X-rays, or cosmic rays will be described. Finally I will discuss how astrochemical processes of dust and molecules in SNRs impact the large scale structures in the ISM.


1968 ◽  
Vol 1 ◽  
pp. 206-209
Author(s):  
Hugh M. Johnson

The six or eight optically identified X-ray sources comprise starlike objects and extended supernova remnants in the Galaxy, well as as a radio galaxy and a quasar. Both X-ray and radiofrequency radiation penetrate the entire galactic plane, but only two or three galactic radio sources have been identified with X-ray sources. This has led Hayakawa et al. to postulate that detectable X-ray sources are not farther than 1 kpc. However, other studies suggest that there is a cluster of a few intrinsically bright sources actually near the galactic nucleus and a scattering of weaker sources near the sun.The distances of X-ray sources can be estimated from extinction by interstellar gas or intergalactic gas on spectra above 10 Å, but the method ultimately depends on the radio and optical data of the gas. Conversely, interstellar densities of certain elements with large photo-ionization cross-sections may be determined from the absorption of X-rays, after calibration of source distances by the methods of optical astronomy.


1973 ◽  
Vol 55 ◽  
pp. 51-73 ◽  
Author(s):  
L. E. Peterson

A review of the observational status of X-ray sources detected in the 20 ⋍ 500 keV range is presented. Of the approximately 115 sources listed in the March 1972 edition of the UHURU 2–6 keV sky survey catalog, about 15 sources have been studied in hard X-rays. Most of the data have been obtained from balloons, although the OSO-3, and more recently the OSO-7, have contributed. With the exception of CEN A, the SMC, and possibly M-87, all the sources detected at higher energies are galactic and heavily concentrated in the galactic plane. The Crab Nebula has been measured to about 500 keV in continuous emission and a component at the ⋍ 33 ms pulsar period comprising about 20% of the total emission has been detected to ∼10 MeV. Objects such as SCO-1 and CYG-2 are characterized by an exponential spectrum, which varies over a 10 min. time scale about a factor of two, and a flatter spectrum extending to above 40 keV which exhibits independent variability. Objects such as CYG-1 and possibly CYG-3 have a multi-component power law spectrum extending to over 100 keV, and may vary many factors over a period of weeks. Other sources generally not yet identified with optical or radio candidates, located in the Galactic Center and the Centaurus/Crux region also show considerable variability, and in one case may have been detected to nearly 500 keV. Only upper limits at about 2 × 10−4 photon (cm2 s keV)−1 in the 20–50 keV range exist for most supernova remnants and extragalactic sources.


1983 ◽  
Vol 101 ◽  
pp. 321-328
Author(s):  
R. H. Becker

On the basis of extensive radio surveys of the galactic plane, approximately 140 sources of diffuse radio emission have been classified as supernova remnants (SNR). Using spectral index and spatial distribution as the primary selection criteria, these have been subdivided into two groups, “shell” and “Crab-like”. In each case, the radio emission is assumed to be of non-thermal origin. The two distinct morphologies arise from two distinct energy sources. For shell remnants, the energy is drawn from the reservoir of kinetic energy in the expanding shock front; in Crab-like remnants, the energy is drawn from the rotational kinetic energy of a central stellar remnant.These two classes of remnants differ significantly in their x-ray emission. With few exceptions, radio shell remnants emit thermal x-rays from shock heated gas which is itself distributed in a shell. Crab-like sources (as defined by their radio properties) emit synchrotron x-rays in a centrally-peaked spatial distribution. Presumably, the x-ray emission from these objects is an extension of the radio spectrum. Crab-like sources have a high probability of containing a compact (unresolved) source of x-ray emission which in analogy to the Crab Nebula, is identified as the central stellar remnant.The general absence of either compact x-ray sources or Crab-like diffuse nebulae within shell sources indicates that active pulsars are not usually formed in SN events which eventually form shell sources. However, there are several examples of remnants which share both shell and Crab-like characteristics so we cannot rule out an evolutionary connection between these two classes of SNR.


Sign in / Sign up

Export Citation Format

Share Document