symmetric space
Recently Published Documents


TOTAL DOCUMENTS

644
(FIVE YEARS 66)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Heiko Dietrich ◽  
Willem A De Graaf ◽  
Alessio Marrani ◽  
Marcos Origlia

Abstract We classify four qubit states under SLOCC operations, that is, we classify the orbits of the group SL(2,C)^4 on the Hilbert space H_4 = (C^2)^{\otimes 4}. We approach the classification by realising this representation as a symmetric space of maximal rank. We first describe general methods for classifying the orbits of such a space. We then apply these methods to obtain the orbits in our special case, resulting in a complete and irredundant classification of SL(2,C)^4-orbits on H_4. It follows that an element of H_4 is conjugate to an element of precisely 87 classes of elements. Each of these classes either consists of one element or of a parametrised family of elements, and the elements in the same class all have equal stabiliser in SL(2,C)^4. We also present a complete and irredundant classification of elements and stabilisers up to the action of the semidirect product Sym_4\ltimes\SL(2,C)^4 where Sym_4 permutes the four tensor factors of H_4.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David M. Schmidtt

Abstract We derive, within the Hamiltonian formalism, the classical exchange algebra of a lambda deformed string sigma model in a symmetric space directly from a 4d holomorphic Chern-Simons theory. The explicit forms of the extended Lax connection and R-matrix entering the Maillet bracket of the lambda model are explained from a symmetry principle. This approach, based on a gauge theory, may provide a mechanism for taming the non-ultralocality that afflicts most of the integrable string theories propagating in coset spaces.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Dmitri V. Alekseevsky ◽  
Alessio Marrani ◽  
Andrea Spiro

Abstract We consider the static, spherically symmetric and asymptotically flat BPS extremal black holes in ungauged N = 2 D = 4 supergravity theories, in which the scalar manifold of the vector multiplets is homogeneous. By a result of Shmakova on the BPS attractor equations, the entropy of this kind of black holes can be expressed only in terms of their electric and magnetic charges, provided that the inverse of a certain quadratic map (uniquely determined by the prepotential of the theory) is given. This inverse was previously known just for the cases in which the scalar manifold of the theory is a homogeneous symmetric space. In this paper we use Vinberg’s theory of homogeneous cones to determine an explicit expression for such an inverse, under the assumption that the scalar manifold is homogeneous, but not necessarily symmetric. As immediate consequence, we get a formula for the entropy of BPS black holes that holds in any model of N = 2 supergravity with homogeneous scalar manifold.


Author(s):  
Ivo Slegers

AbstractWe consider harmonic maps into symmetric spaces of non-compact type that are equivariant for representations that induce a free and proper action on the symmetric space. We show that under suitable non-degeneracy conditions such equivariant harmonic maps depend in a real analytic fashion on the representation they are associated to. The main tool in the proof is the construction of a family of deformation maps which are used to transform equivariant harmonic maps into maps mapping into a fixed target space so that a real analytic version of the results in [4] can be applied.


2021 ◽  
pp. 1-20
Author(s):  
J. C. Álvarez Paiva ◽  
J. Barbosa Gomes

It is shown that a possibly irreversible [Formula: see text] Finsler metric on the torus, or on any other compact Euclidean space form, whose geodesics are straight lines is the sum of a flat metric and a closed [Formula: see text]-form. This is used to prove that if [Formula: see text] is a compact Riemannian symmetric space of rank greater than one and [Formula: see text] is a reversible [Formula: see text] Finsler metric on [Formula: see text] whose unparametrized geodesics coincide with those of [Formula: see text], then [Formula: see text] is a Finsler symmetric space.


2021 ◽  
Vol 27 (4) ◽  
pp. 358-374
Author(s):  
K. A. Bronnikov ◽  
S. V. Bolokhov ◽  
M. V. Skvortsova

Sign in / Sign up

Export Citation Format

Share Document