Certain countably generated big Cohen-Macaulay modules are balanced

Author(s):  
R. Y. Sharp

Throughout this note, A will denote a (commutative, Noetherian) local ring (with identity) having maximal ideal m and dimension d. Let x1, …, xd be a system of parameters (s.o.p.) for A. A (not necessarily finitely generated) A-module M is said to be a big Cohen–Macaulay A-module with respect to x1, …, xd, if x1, …, xd is an M-sequence. In the last ten or fifteen years there has been substantial interest in such modules, initially stemming from M. Hochster's discoveries that, if A contains a field as a subring, and x1, …,xd is any s.o.p. for A, then there exists a big Cohen-Macaulay A-module with respect to x1, …,xd, and that the existence of such modules has important consequences for the local homological conjectures in commutative algebra: see [6].

Author(s):  
R. Y. Sharp

Let A be a (commutative, Noetherian) local ring (with identity) and let a1,…, an be a system of parameters (s.o.p.) for A. A (not necessarily finitely generated) A-module M is said to be a big Cohen–Macaulay.A-module with respect to a1,…, an if a1,…, an is an M-sequence, that is if M ‡ = (a1,…, an) M and, for each i = 1,…, n,One of the main open problems in commutative algebra at the present time is that of establishing the existence of a big Cohen–Macaulay module with respect to a specified s.o.p. in an arbitrary local ring. The work and writings of Hochster, such as (5), show that, if the existence of such modules could be established, then several conjectures in commutative algebra, some of which are quite long-standing, would be settled. Moreover, Hochster has established the existence of such big Cohen–Macaulay modules whenever the local ring A concerned contains a field as a subring, or has dimension not exceeding 2: see ((5), chapters 4, 5) and (4).


Author(s):  
N. T. Cuong ◽  
N. D. Minh

Throughout this paper, let A be a Noetherian local ring with maximal ideal m and M a finitely generated A-module with d = dimAM ≥ 1. Denote by N the set of all positive integers.Let x = (x1, …, xd) be a system of parameters (s.o.p) for M and letWe consider the following two problems: (i) When is the length of Koszul homologya polynomial in n for all k = 0, …, d and n1; …, nd sufficiently large (n ≫ 0)?(ii) Is the length of the generalized fraction in a polynomial in n for n ≫ 0?


1983 ◽  
Vol 93 (2) ◽  
pp. 253-257
Author(s):  
M. L. Brown

Let R be a noetherian local ring and x = x1, …, xn a system of parameters for R. If R is an equicharacteristic local ring then Hochster(3) proved there is a big Cohen-Macaulay module with respect to x, i.e. an R-module M, not necessarily noetherian, with x1, …, xn a regular sequence on M and M/(x) M ≠ 0. Such modules are important for the study of the homological conjectures in commutative algebra(3). Nevertheless, for mixed characteristic local rings virtually nothing is known about their existence.


2021 ◽  
Vol 28 (01) ◽  
pp. 13-32
Author(s):  
Nguyen Tien Manh

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text], [Formula: see text] an ideal of [Formula: see text], [Formula: see text] an [Formula: see text]-primary ideal of [Formula: see text], [Formula: see text] a finitely generated [Formula: see text]-module, [Formula: see text] a finitely generated standard graded algebra over [Formula: see text] and [Formula: see text] a finitely generated graded [Formula: see text]-module. We characterize the multiplicity and the Cohen–Macaulayness of the fiber cone [Formula: see text]. As an application, we obtain some results on the multiplicity and the Cohen–Macaulayness of the fiber cone[Formula: see text].


1986 ◽  
Vol 102 ◽  
pp. 1-49 ◽  
Author(s):  
Ngô Viêt Trung

Throughout this paper, A denotes a noetherian local ring with maximal ideal m and M a finitely generated A-module with d: = dim M≥1.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750163
Author(s):  
Rasoul Ahangari Maleki

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text] and residue field [Formula: see text]. The linearity defect of a finitely generated [Formula: see text]-module [Formula: see text], which is denoted [Formula: see text], is a numerical measure of how far [Formula: see text] is from having linear resolution. We study the linearity defect of the residue field. We give a positive answer to the question raised by Herzog and Iyengar of whether [Formula: see text] implies [Formula: see text], in the case when [Formula: see text].


1990 ◽  
Vol 120 ◽  
pp. 77-88 ◽  
Author(s):  
Nguyen Tu Cuong

Throughout this note, A denotes a commutative local Noetherian ring with maximal ideal m and M a finitely generated A-module with dim (M) = d. Let x1, …, xd be a system of parameters (s.o.p. for short) for M and I the ideal of A generated by x1, …, xd.


2009 ◽  
Vol 16 (04) ◽  
pp. 653-660
Author(s):  
Kazem Khashyarmanesh

Given a commutative Noetherian local ring (R, 𝔪), it is shown that R is Gorenstein if and only if there exists a system of parameters x1,…,xd of R which generates an irreducible ideal and [Formula: see text] for all t > 0. Let n be an arbitrary non-negative integer. It is also shown that for an arbitrary ideal 𝔞 of a commutative Noetherian (not necessarily local) ring R and a finitely generated R-module M, [Formula: see text] is finitely generated if and only if there exists an 𝔞-filter regular sequence x1,…,xn∈ 𝔞 such that [Formula: see text] for all t > 0.


1980 ◽  
Vol 80 ◽  
pp. 107-116 ◽  
Author(s):  
Shiro Goto

Let A be a Noetherian local ring of dimension d and with maximal ideal m. Then A is called Buchsbaum if every system of parameters is a weak sequence. This is equivalent to the condition that, for every parameter ideal q, the difference is an invariant I(A) of A not depending on the choice of q. (See Section 2 for the detail.) The concept of Buchsbaum rings was introduced by Stückrad and Vogel [8], and the theory of Buchsbaum singularities is now developing (cf. [6], [7], [9], [10], and [12]).


1988 ◽  
Vol 104 (3) ◽  
pp. 451-478 ◽  
Author(s):  
Kikumichi Yamagishi

Throughout this paper A denotes a Noetherian local ring with maximal ideal m and M denotes a finitely generated A-module. Moreover stands for the ith local cohomology functor with respect to m (cf. [10]). We refer to [15] for unexplained terminolog.


Sign in / Sign up

Export Citation Format

Share Document