Spectra of composition operators on algebras of analytic functions on Banach spaces

Author(s):  
P. Galindo ◽  
T. W. Gamelin ◽  
Mikael Lindström

Let E be a Banach space, with unit ball BE. We study the spectrum and the essential spectrum of a composition operator on H∞(BE) determined by an analytic symbol with a fixed point in BE. We relate the spectrum of the composition operator to that of the derivative of the symbol at the fixed point. We extend a theorem of Zheng to the context of analytic symbols on the open unit ball of a Hilbert space.

2011 ◽  
Vol 27 (1) ◽  
pp. 142-147
Author(s):  
FRANCESCA VETRO ◽  

Let X be a Banach space with metric d. Let T, N : X → X be a strict d-contraction and a d-nonexpansive map, respectively. In this paper we investigate the properties of the approximating curve associated with T and N. Moreover, following [3], we consider the approximating curve associated with a holomorphic map f : B → α B and a ρ-nonexpansive map M : B → B, where B is the open unit ball of a complex Hilbert space H, ρ is the hyperbolic metric defined on B and 0 ≤ α < 1. We give conditions on f and M for this curve to be injective, and we show that this curve is continuous.


1994 ◽  
Vol 49 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Juan Ferrera ◽  
Angeles Prieto

We introduce in this paper the space of bounded holomorphic functions on the open unit ball of a Banach space endowed with the strict topology. Some good properties of this topology are obtained. As applications, we prove some results on approximation by polynomials and a description of the continuous homomorphisms.


2000 ◽  
Vol 62 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Shamil Makhmutov ◽  
Maria Tjani

We characterise the compact composition operators from any Mobius invariant Banach space to VMOA, the space of holomorphic functions on the unit disk U that have vanishing mean oscillation. We use this to obtain a characterisation of the compact composition operators from the Bloch space to VMOA. Finally, we study some properties of hyperbolic VMOA functions. We show that a function is hyperbolic VMOA if and only if it is the symbol of a compact composition operator from the Bloch space to VMOA.


1978 ◽  
Vol 30 (01) ◽  
pp. 22-31 ◽  
Author(s):  
Kyong T. Hahn

Furnishing the open unit ball of a complex Hilbert space with the Carathéodory-differential metric, we construct a model which plays a similar role as that of the Poincaré model for the hyperbolic geometry. In this note we study the question whether or not through a point in the model not lying on a given line there exists a unique perpendicular, and give a necessary and sufficient condition for the existence of a unique perpendicular. This enables us to divide a triangle into two right triangles. Many trigonometric identities in a general triangle are easy consequences of various identities which hold on a right triangle.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Verónica Dimant ◽  
Domingo García ◽  
Manuel Maestre ◽  
Pablo Sevilla-Peris

For two complex Banach spacesXandY, in this paper, we study the generalized spectrumℳb(X,Y)of all nonzero algebra homomorphisms fromℋb(X), the algebra of all bounded type entire functions onX, intoℋb(Y). We endowℳb(X,Y)with a structure of Riemann domain overℒ(X*,Y*)wheneverXis symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the setℳb,∞(X,BY)of all nonzero algebra homomorphisms fromℋb(X)intoℋ∞(BY)of bounded holomorphic functions on the open unit ball ofYandℳ∞(BX,BY)of all nonzero algebra homomorphisms fromℋ∞(BX)intoℋ∞(BY).


1999 ◽  
Vol 143 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Jaroslaw Kapeluszny ◽  
Tadeusz Kuczumow ◽  
Simeon Reich

Sign in / Sign up

Export Citation Format

Share Document