TEM in situ straining of polycrystalline stoichiometric NiAl

Author(s):  
P. Nagpal ◽  
I. Baker

The purpose of this paper is to present a comparison of the dislocation structures that are present in polycrystalline samples of the B2 (ordered body-centered cubic) compound NiAI after straining in bulk and after in-situ straining of thin foils in the TEM.A dumbell-shaped tensile specimen (gauge length ∼ 10mm; diameter ∼ 3mm) of ∼15μm grain-sized stoichiometric NiAl which had a low initial dislocation density was strained to fracture under tension. The fracture strain was ∼ 2%. Discs were cut from the gauge and thin foils were prepared as described elsewhere. (Processing conditions to obtain this fine-grained material are also described elsewhere.) TEM in-situ straining samples (7mm long; 3 mm wide; 0.25 mm thick, with 1mm diameter loading holes located 1.5mm from the ends, see reference 4 for details) were prepared from the same material and strained in a modified JEOL straining holder. Both sets of samples were viewed in a JEOL 2000FX operated at 200 KeV. For the in-situ experiments images were recorded either on film after a given strain increment or dynamically during straining using a Gatan camera, an image intensifier and a VCR.

2005 ◽  
Vol 20 (7) ◽  
pp. 1869-1877 ◽  
Author(s):  
K. Hattar ◽  
J. Han ◽  
M.T.A. Saif ◽  
I.M. Robertson

A unique straining device, fabricated using microlithographic techniques, has been developed to permit real-time investigation in the transmission electron microscope (TEM) of the deformation and failure mechanisms in ultrafine-grained aluminum. The tensile specimen is a freestanding thin film with a columnar microstructure that has a uniform cross-section (100 × 0.125 μm) and a gauge length of 300 μm. In situ TEM straining experiments show the fracture mode is intergranular with no accompanying general plasticity. Propagating cracks were halted at large grains, and crack blunting occurred through grain-boundary-mediated processes. The blunting process was accompanied by dislocation emission and deformation twinning in the grain responsible for arresting the crack. Voids or microcracks nucleated and grew on grain boundaries ahead of the arrested crack, and crack advance occurred through linkage of the microcracks and the primary crack.


Author(s):  
L. J. Chen ◽  
J. W. Mayer

In-situ dynamical experiments in the transmission electron microscope (TEM) have long interested electron microscopists. In designing and performing the experiments, it is important to minimize the influences of the factors, which include the specimen thickness, electron beam heating, electron irradiation and specimen environments that may affect the validity of in-situ experiments. Comparisons of the results with those of other experiments are also very desirable.In microelectronic device fabrication process, it has become increasingly common to react a few hundred Å in thickness metal films with silicon substrate to form silicide contacts. Ni thin films on silicon have been chosen for in-situ annealing study since this system has been extensively investigated by Rutherford backscattering and glancing angle x-ray experiments. In-situ annealing of Co, Mo, Ti, Pd and W thin films on silicon have also been performed.Ni films, 300 and 400 Å thick, were electron gun deposited on (001) n-type silicon. Thin foils for TEM examination were chemically polished from silicon side. A JEOL 100B microscope equipped with a side entry, single tilt hot stage was used for TEM study.


2008 ◽  
Vol 584-586 ◽  
pp. 249-254
Author(s):  
Ke Jing Yang ◽  
Yulia Ivanisenko ◽  
J. Markmann ◽  
Hans Jorg Fecht

In situ tensile tests were conducted on ultra fine grained (UFG) pure Pd and Pd-x% Ag (x=20, 60) alloys of different stacking fault energies (SFEs) with the aim to study the general features of the deformation process of UFG materials as well as the peculiarities brought by the alloying. Grey scale correlation analysis (GSCA) was used to determine the true strain as well as the surface flow within the gauge length. It was shown that the largest values of strength and uniform elongation were obtained in Pd-20% Ag alloy. The GSCA revealed different macroscopic flow processes in this sample as compared with pure Pd and Pd-60% Ag alloy. In particular, pure Pd and Pd-60% Ag alloy demonstrated rapid localization of plastic flow in the neck area, whereas Pd-20% Ag samples showed a large contribution of homogenous deformation even after neck formation. It has been proposed that larger strain hardening capacity of Pd-20% Ag alloy is related to its lower SFE as compared with that of pure Pd: the lower is the SFE, the more difficult is the cross slip and climb of split dislocations, which leads to enhanced dislocation storage and, ultimately, to increased strain hardening. At the same time, further decrease of SFE in Pd-60% Ag sample leads to development of deformation twinning and consequent reduction of strain hardening. The dimpled structure of fracture surfaces in the samples will also be discussed in relationship to these findings.


Author(s):  
D. Caillard ◽  
J.L. Martin

The behaviour of the dislocation substructure during the steady stage regime of creep, as well as its contribution to the creep rate, are poorly known. In particular, the stability of the subboundaries has been questioned recently, on the basis of experimental observations |1||2| and theoretical estimates |1||3|. In situ deformation experiments in the high voltage electron microscope are well adapted to the direct observation of this behaviour. We report here recent results on dislocation and subboundary properties during stationary creep of an aluminium polycristal at 200°C.During a macroscopic creep test at 200°C, a cell substructure is developed with an average cell size of a few microns. Microsamples are cut out of these specimens |4| with the same tensile axis, and then further deformed in the microscope at the same temperature and stain rate. At 1 MeV, one or a few cells can be observed in the foil thickness |5|. Low electron fluxes and an image intensifier were used to reduce radiation damage effects.


Author(s):  
D.I. Potter ◽  
A. Taylor

Thermal aging of Ni-12.8 at. % A1 and Ni-12.7 at. % Si produces spatially homogeneous dispersions of cuboidal γ'-Ni3Al or Ni3Si precipitate particles arrayed in the Ni solid solution. We have used 3.5-MeV 58Ni+ ion irradiation to examine the effect of irradiation during precipitation on precipitate morphology and distribution. The nearness of free surfaces produced unusual morphologies in foils thinned prior to irradiation. These thin-foil effects will be important during in-situ investigations of precipitation in the HVEM. The thin foil results can be interpreted in terms of observations from bulk irradiations which are described first.Figure 1a is a dark field image of the γ' precipitate 5000 Å beneath the surface(∿1200 Å short of peak damage) of the Ni-Al alloy irradiated in bulk form. The inhomogeneous spatial distribution of γ' results from the presence of voids and dislocation loops which can be seen in the bright field image of the same area, Fig. 1b.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Author(s):  
N. Ridley ◽  
S.A. Al-Salman ◽  
G.W. Lorimer

The application of the technique of analytical electron microscopy to the study of partitioning of Mn (1) and Cr (2) during the austenite-pearlite transformation in eutectoid steels has been described in previous papers. In both of these investigations, ‘in-situ’ analyses of individual cementite and ferrite plates in thin foils showed that the alloying elements partitioned preferentially to cementite at the transformation front at higher reaction temperatures. At lower temperatures partitioning did not occur and it was possible to identify a ‘no-partition’ temperature for each of the steels examined.In the present work partitioning during the pearlite transformation has been studied in a eutectoid steel containing 1.95 wt% Si. Measurements of pearlite interlamellar spacings showed, however, that except at the highest reaction temperatures the spacing would be too small to make the in-situ analysis of individual cementite plates possible, without interference from adjacent ferrite lamellae. The minimum diameter of the analysis probe on the instrument used, an EMMA-4 analytical electron microscope, was approximately 100 nm.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


Sign in / Sign up

Export Citation Format

Share Document