On Restricted Sums

2000 ◽  
Vol 9 (6) ◽  
pp. 513-518 ◽  
Author(s):  
Y. O. HAMIDOUNE ◽  
A. S. LLADÓ ◽  
O. SERRA

Let G be an abelian group. For a subset A ⊂ G, denote by 2 ∧ A the set of sums of two different elements of A. A conjecture by Erdős and Heilbronn, first proved by Dias da Silva and Hamidoune, states that, when G has prime order, [mid ]2 ∧ A[mid ] [ges ] min([mid ]G[mid ], 2[mid ]A[mid ] − 3).We prove that, for abelian groups of odd order (respectively, cyclic groups), the inequality [mid ]2 ∧ A[mid ] [ges ] min([mid ]G[mid ], 3[mid ]A[mid ]/2) holds when A is a generating set of G, 0 ∈ A and [mid ]A[mid ] [ges ] 21 (respectively, [mid ]A[mid ] [ges ] 33). The structure of the sets for which equality holds is also determined.

1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1537 ◽  
Author(s):  
Lingling Han ◽  
Xiuyun Guo

In this paper, we mainly count the number of subgroup chains of a finite nilpotent group. We derive a recursive formula that reduces the counting problem to that of finite p-groups. As applications of our main result, the classification problem of distinct fuzzy subgroups of finite abelian groups is reduced to that of finite abelian p-groups. In particular, an explicit recursive formula for the number of distinct fuzzy subgroups of a finite abelian group whose Sylow subgroups are cyclic groups or elementary abelian groups is given.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250030 ◽  
Author(s):  
MARC KEILBERG

In this paper we explicitly determine all indicators for groups isomorphic to the semidirect product of two cyclic groups by an automorphism of prime order, as well as the generalized quaternion groups. We then compute the indicators for the Drinfel'd doubles of these groups. This first family of groups include the dihedral groups, the non-abelian groups of order pq, and the semidihedral groups. We find that the indicators are all integers, with negative integers being possible in the first family only under certain specific conditions.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 294
Author(s):  
Daniel López-Aguayo ◽  
Servando López Aguayo

We extend the concepts of antimorphism and antiautomorphism of the additive group of integers modulo n, given by Gaitanas Konstantinos, to abelian groups. We give a lower bound for the number of antiautomorphisms of cyclic groups of odd order and give an exact formula for the number of linear antiautomorphisms of cyclic groups of odd order. Finally, we give a partial classification of the finite abelian groups which admit antiautomorphisms and state some open questions.


2001 ◽  
Vol 63 (1) ◽  
pp. 115-121 ◽  
Author(s):  
T. Bier ◽  
A. Y. M. Chin

Let A be a finite Abelian group written additively. For two positive integers k, l with k ≠ l, we say that a subset S ⊂ A is of type (k, l) or is a (k, l) -set if the equation x1 + x2 + … + xk − xk+1−… − xk+1 = 0 has no solution in the set S. In this paper we determine the largest possible cardinality of a (k, l)-set of the cyclic group ℤP where p is an odd prime. We also determine the number of (k, l)-sets of ℤp which are in arithmetic progression and have maximum cardinality.


10.37236/2054 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Amanda Montejano ◽  
Oriol Serra

A $3$-coloring of the elements of an abelian group is said to be rainbow-free if there is no $3$-term arithmetic progression with its members having pairwise distinct colors. We give a structural characterization of rainbow-free colorings of abelian groups. This characterization proves a conjecture of Jungić et al. on the size of the smallest chromatic class of a rainbow-free $3$-coloring of cyclic groups.


2012 ◽  
Vol 54 (2) ◽  
pp. 371-380
Author(s):  
G. G. BASTOS ◽  
E. JESPERS ◽  
S. O. JURIAANS ◽  
A. DE A. E SILVA

AbstractLet G be a group such that, for any subgroup H of G, every automorphism of H can be extended to an automorphism of G. Such a group G is said to be of injective type. The finite abelian groups of injective type are precisely the quasi-injective groups. We prove that a finite non-abelian group G of injective type has even order. If, furthermore, G is also quasi-injective, then we prove that G = K × B, with B a quasi-injective abelian group of odd order and either K = Q8 (the quaternion group of order 8) or K = Dih(A), a dihedral group on a quasi-injective abelian group A of odd order coprime with the order of B. We give a description of the supersoluble finite groups of injective type whose Sylow 2-subgroup are abelian showing that these groups are, in general, not quasi-injective. In particular, the characterisation of such groups is reduced to that of finite 2-groups that are of injective type. We give several restrictions on the latter. We also show that the alternating group A5 is of injective type but that the binary icosahedral group SL(2, 5) is not.


1974 ◽  
Vol 26 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Paul Hill

In a fundamental paper on torsion-free abelian groups, R. Baer [1] proved that the group P of all sequences of integers with respect to componentwise addition is not free. This means precisely that P is not a direct sum of infinite cyclic groups. However, E. Specker proved in [9] that P has the property that any countable subgroup is free. Since an infinite abelian group G is called -free if each subgroup of rank less than is free, these results are equivalent to: P is -free but not free.


Sign in / Sign up

Export Citation Format

Share Document