scholarly journals In silico prediction of high-resolution Hi-C interaction matrices

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shilu Zhang ◽  
Deborah Chasman ◽  
Sara Knaack ◽  
Sushmita Roy

AbstractThe three-dimensional (3D) organization of the genome plays an important role in gene regulation bringing distal sequence elements in 3D proximity to genes hundreds of kilobases away. Hi-C is a powerful genome-wide technique to study 3D genome organization. Owing to experimental costs, high resolution Hi-C datasets are limited to a few cell lines. Computational prediction of Hi-C counts can offer a scalable and inexpensive approach to examine 3D genome organization across multiple cellular contexts. Here we present HiC-Reg, an approach to predict contact counts from one-dimensional regulatory signals. HiC-Reg predictions identify topologically associating domains and significant interactions that are enriched for CCCTC-binding factor (CTCF) bidirectional motifs and interactions identified from complementary sources. CTCF and chromatin marks, especially repressive and elongation marks, are most important for HiC-Reg’s predictive performance. Taken together, HiC-Reg provides a powerful framework to generate high-resolution profiles of contact counts that can be used to study individual locus level interactions and higher-order organizational units of the genome.

2018 ◽  
Author(s):  
Shilu Zhang ◽  
Deborah Chasman ◽  
Sara Knaack ◽  
Sushmita Roy

AbstractThe three-dimensional organization of the genome plays an important role in gene regulation by enabling distal sequence elements to control the expression level of genes hundreds of kilobases away. Hi-C is a powerful genome-wide technique to measure the contact count of pairs of genomic loci needed to study three-dimensional organization. Due to experimental costs high resolution Hi-C datasets are available only for a handful of cell lines. Computational prediction of Hi-C contact counts can offer a scalable and inexpensive approach to examine three-dimensional genome organization across many cellular contexts. Here we present HiC-Reg, a novel approach to predict contact counts from one-dimensional regulatory signals such as epigenetic marks and regulatory protein binding. HiC-Reg exploits the signal from the region spanning two interacting regions and from across multiple cell lines to generalize to new contexts. Using existing feature importance measures and a new matrix factorization based approach, we found CTCF and chromatin marks, especially repressive and elongation marks, as important for predictive performance. Predicted counts from HiC-Reg identify topologically associated domains as well as significant interactions that are enriched for CTCF bi-directional motifs and agree well with interactions identified from complementary long-range interaction assays. Taken together, HiC-Reg provides a powerful framework to generate high-resolution profiles of contact counts that can be used to study individual locus level interactions as well as higher-order organizational units of the genome.


2019 ◽  
Vol 19 (2) ◽  
pp. 71-82 ◽  
Author(s):  
Anne van Schoonhoven ◽  
Danny Huylebroeck ◽  
Rudi W Hendriks ◽  
Ralph Stadhouders

Abstract Chromosomes have a complex three-dimensional (3D) architecture comprising A/B compartments, topologically associating domains and promoter–enhancer interactions. At all these levels, the 3D genome has functional consequences for gene transcription and therefore for cellular identity. The development and activation of lymphocytes involves strict control of gene expression by transcription factors (TFs) operating in a three-dimensionally organized chromatin landscape. As lymphocytes are indispensable for tissue homeostasis and pathogen defense, and aberrant lymphocyte activity is involved in a wide range of human morbidities, acquiring an in-depth understanding of the molecular mechanisms that control lymphocyte identity is highly relevant. Here we review current knowledge of the interplay between 3D genome organization and transcriptional control during B and T lymphocyte development and antigen-dependent activation, placing special emphasis on the role of TFs.


Genetics ◽  
2020 ◽  
Vol 214 (3) ◽  
pp. 651-667 ◽  
Author(s):  
Marco Di Stefano ◽  
Francesca Di Giovanni ◽  
Vasilisa Pozharskaia ◽  
Mercè Gomar-Alba ◽  
Davide Baù ◽  
...  

The three-dimensional (3D) organization of chromosomes can influence transcription. However, the frequency and magnitude of these effects remain debated. To determine how changes in chromosome positioning affect transcription across thousands of genes with minimal perturbation, we characterized nuclear organization and global gene expression in budding yeast containing chromosome fusions. We used computational modeling and single-cell imaging to determine chromosome positions, and integrated these data with genome-wide transcriptional profiles from RNA sequencing. We find that chromosome fusions dramatically alter 3D nuclear organization without leading to strong genome-wide changes in transcription. However, we observe a mild but significant and reproducible increase in the expression of genes displaced away from the periphery. The increase in transcription is inversely proportional to the propensity of a given locus to be at the nuclear periphery; for example, a 10% decrease in the propensity of a gene to reside at the nuclear envelope is accompanied by a 10% increase in gene expression. Modeling suggests that this is due to both deletion of telomeres and to displacement of genes relative to the nuclear periphery. These data suggest that basal transcriptional activity is sensitive to radial changes in gene position, and provide insight into the functional relevance of budding yeast chromosome-level 3D organization in gene expression.


2020 ◽  
Author(s):  
Kei Fukuda ◽  
Chikako Shimura ◽  
Hisashi Miura ◽  
Akie Tanigawa ◽  
Takehiro Suzuki ◽  
...  

AbstractBackgroundHistone H3 lysine 9 dimethylation (H3K9me2) is a highly conserved silencing epigenetic mark. Chromatin marked with H3K9me2 forms large domains in mammalian cells and correlates well with lamina-associated domains and the B compartment. However, the role of H3K9me2 in 3-dimensional (3D) genome organization remains unclear.ResultsWe investigated the genome-wide H3K9me2 distribution, the transcriptome and 3D genome organization in mouse embryonic stem cells (mESCs) upon the inhibition or depletion of H3K9 methyltransferases (MTases) G9a/GLP, SETDB1, and SUV39H1/2. We found that H3K9me2 is regulated by these five MTases; however, H3K9me2 and transcription in the A and B compartments were largely regulated by different sets of the MTases: H3K9me2 in the A compartments were mainly regulated by G9a/GLP and SETDB1, while H3K9me2 in the B compartments were regulated by all five H3K9 MTases. Furthermore, decreased H3K9me2 correlated with the changes to the more active compartmental state that accompanied transcriptional activation.ConclusionOur data showed that H3K9me2 domain formation is functionally linked to 3D genome organization.


2019 ◽  
Vol 63 (1) ◽  
pp. 157-165 ◽  
Author(s):  
Luca Braccioli ◽  
Elzo de Wit

Abstract Orchestrating vertebrate genomes require a complex interplay between the linear composition of the genome and its 3D organization inside the nucleus. This requires the function of specialized proteins, able to tune various aspects of genome organization and gene regulation. The CCCTC-binding factor (CTCF) is a DNA binding factor capable of regulating not only the 3D genome organization, but also key aspects of gene expression, including transcription activation and repression, RNA splicing, and enhancer/promoter insulation. A growing body of evidence proposes that CTCF, together with cohesin contributes to DNA loop formation and 3D genome organization. CTCF binding sites are mutation hotspots in cancer, while mutations in CTCF itself lead to intellectual disabilities, emphasizing its importance in disease etiology. In this review we cover various aspects of CTCF function, revealing the polyvalence of this factor as a highly diversified tool for vertebrate genome organization and transcription regulation.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 272
Author(s):  
Aktan Alpsoy ◽  
Surbhi Sood ◽  
Emily C. Dykhuizen

In higher order organisms, the genome is assembled into a protein-dense structure called chromatin. Chromatin is spatially organized in the nucleus through hierarchical folding, which is tightly regulated both in cycling cells and quiescent cells. Assembly and folding are not one-time events in a cell’s lifetime; rather, they are subject to dynamic shifts to allow changes in transcription, DNA replication, or DNA damage repair. Chromatin is regulated at many levels, and recent tools have permitted the elucidation of specific factors involved in the maintenance and regulation of the three-dimensional (3D) genome organization. In this review/perspective, we aim to cover the potential, but relatively unelucidated, crosstalk between 3D genome architecture and the ATP-dependent chromatin remodelers with a specific focus on how the architectural proteins CTCF and cohesin are regulated by chromatin remodeling.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Dan-Ya Wu ◽  
Xinxin Li ◽  
Qiao-Ran Sun ◽  
Cheng-Li Dou ◽  
Tian Xu ◽  
...  

AbstractNuclear transfer embryonic stem cells (ntESCs) hold enormous promise for individual-specific regenerative medicine. However, the chromatin states of ntESCs remain poorly characterized. In this study, we employed ATAC-seq and Hi-C techniques to explore the chromatin accessibility and three-dimensional (3D) genome organization of ntESCs. The results show that the chromatin accessibility and genome structures of somatic cells are re-arranged to ESC-like states overall in ntESCs, including compartments, topologically associating domains (TADs) and chromatin loops. However, compared to fertilized ESCs (fESCs), ntESCs show some abnormal openness and structures that have not been reprogrammed completely, which impair the differentiation potential of ntESCs. The histone modification H3K9me3 may be involved in abnormal structures in ntESCs, including incorrect compartment switches and incomplete TAD rebuilding. Moreover, ntESCs and iPSCs show high similarity in 3D genome structures, while a few differences are detected due to different somatic cell origins and reprogramming mechanisms. Through systematic analyses, our study provides a global view of chromatin accessibility and 3D genome organization in ntESCs, which can further facilitate the understanding of the similarities and differences between ntESCs and fESCs.


2020 ◽  
Author(s):  
Benny Wang ◽  
Lingshi Kong ◽  
Deepak Babu ◽  
Ruchi Choudhary ◽  
Winnie Fam ◽  
...  

AbstractAcute Myeloid Leukemia (AML) is a highly lethal blood cancer arising due to aberrant differentiation of haematopoietic stem cells. MEIS1 and HOXA9 regulate stemness-related transcriptional programs in normal haematopoietic stem cells and AML. Here we obtained 3D genome organization maps in the CD34+ haematopoietic stem cells from 3 healthy individuals and 3 individuals with AML. The MEIS1 oncogenic transcription factor is regulated by a Frequently Interacting Region (FIRE). This FIRE is present in normal bone marrow samples, and an AML sample with high MEIS1 levels. However, it is absent in two AML samples that show low MEIS1 levels. CRISPR excision of the FIRE led to loss of MEIS1 and reduced cell growth. Moreover, MEIS1 can bind to the promoter of HOXA9, and HOXA9 can also auto-regulate by binding to its own promoter as well as an Acute Myeloid Leukemia-specific super-enhancer that interacts with the HOXA9 promoter via chromatin interactions.SignificanceMany oncogenes, such as MEIS1 and HOXA9, are overexpressed in some but not all cancers. We identified two key epigenetic mechanisms underlying this heterogeneity in oncogene expression in Acute Myeloid Leukemia. This mechanism could be potentially exploited to utilize epigenetic inhibitors to specifically target oncogene expression in cancer.


2018 ◽  
Author(s):  
Leina Lu ◽  
Xiaoxiao Liu ◽  
Jun Peng ◽  
Yan Li ◽  
Fulai Jin

Despite the growing interest in studying the mammalian genome organization, it is still challenging to map the DNA contacts genome-wide. Here we present easy Hi-C (eHi-C), a highly efficient method for unbiased mapping of 3D genome architecture. The eHi-C protocol only involves a series of enzymatic reactions and maximizes the recovery of DNA products from proximity ligation. We show that eHi-C can be performed with 0.1 million cells and yields high quality libraries comparable to Hi-C.


Sign in / Sign up

Export Citation Format

Share Document