scholarly journals Antagonistic effects of activin A and TNF-α on the activation of L929 fibroblast cells via Smad3-independent signaling

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lingling Jiang ◽  
Boyang Liu ◽  
Yan Qi ◽  
Linru Zhu ◽  
Xueling Cui ◽  
...  

AbstractFibroblasts play an important role in inflammation and tissue fibrosis. Both activin A and TNF-α can activate immune cells, however, the roles and relationship of them in activating fibroblasts in inflammation remain unclear. Here, this study revealed that TNF-α promoted the release of NO and IL-6 by L929 fibroblast cells, but co-treatment with activin A attenuated these effects. In contrast, activin A induced cell migration and increased the production of tissue fibrosis-related TGF-β1 and fibronectin, while TNF-α inhibited these function changes of L929 cells induced by activin A. Moreover, this study revealed that activin A and TNF-α regulated the activities of L929 cells via ERK1/2/MAPK pathway, rather than Smad3-dependent signaling pathway. Taken together, these data indicate that activin A and TNF-α exert mutually antagonistic effects on regulating fibroblasts activities, and the balance between their action may determine the process and outcome of fibroblasts-mediated inflammation.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nancy S. Younis ◽  
Amal M. H. Ghanim ◽  
Sameh Saber

AbstractSorafenib (SO) is a multi-kinase inhibitor that targets upstream signals in the MAPK pathway. Drug resistance and transient survival benefits are the main obstacles associated with SO treatment in Hepatocellular carcinoma (HCC) patients. Mebendazole (MBZ), an anthelmintic agent, has demonstrated activity against various cancer types. Therefore, we aimed to investigate the possible mechanisms of MBZ other than its anti-tubulin activity. MBZ (100 mg/kg/day, P.O.) was administered to N-nitrosodiethylamine-induced HCC mice as a monotherapeutic agent or in combination with SO. Our results revealed that MBZ decreased AFP levels, improved liver function and histology and increased survival in HCC mice, particularly when administered in combination with SO. MBZ also reduced hepatic inflammation and fibrogenesis as evidenced by reductions in TNF-α and TGF-β1 levels, respectively. Increased hepatic caspases-3 and -9 and decreased BCL-2 levels suggest induced-cell death. In addition, MBZ demonstrated anti-angiogenic, anti-metastatic, and anti-proliferative effects, as indicated by reduced VEGF levels, MMP-2:TIMP-1 ratios, and reduced cyclin D1 levels and Ki67 immunostaining, respectively. Our main finding was that MBZ targeted downstream signal of the MAPK pathway by inhibiting ERK1/2 phosphorylation. Targeting downstream MAPK signalling by MBZ and upstream signalling by SO is a novel approach to minimizing resistance and prolonging survival.


2019 ◽  
Vol 34 (2) ◽  
pp. 150-162 ◽  
Author(s):  
Geena Mariya Jose ◽  
Mahadevan Raghavankutty ◽  
G Muraleedhara Kurup

Sulfated polysaccharides are polymers with potent biological roles such as antioxidant, anticancer, anti-inflammatory, and immunomodulatory activities. They are gaining significance in advanced healthcare research, since they can control oxidative cellular damages by arresting the reactive oxygen species. Hence, this study aims to evaluate the cellular antioxidant potential of sulfated polysaccharides isolated from the marine algae Padina tetrastromatica in L929 cells. The monosaccharide composition of sulfated polysaccharides was determined using high-performance liquid chromatography. The protective effect of sulfated polysaccharides on L929 fibroblast cells under H2O2-induced oxidative stress has been evaluated using MTT assay, acridine orange/ethidium bromide staining, flow cytometry, comet assay, DCFH-DA staining, fluorometry, and biochemical assays. Sulfated polysaccharides were found to contain glucose, fucose, xylose, and uronic acid. It was non-toxic to L929 cells and effectively increased the viability of mouse fibroblast cells under induced oxidative stress. Various cellular damages such as apoptosis, plasma membrane alterations, DNA damage, and lipid peroxidation induced by H2O2 have been attenuated by sulfated polysaccharides. This might be due to the reduction of intracellular reactive oxygen species level by sulfated polysaccharides as observed in DCFH-DA staining. Sulfated polysaccharides improved the activity of intracellular antioxidant status and glutathione system. The augmentation of endogenous antioxidant enzymes and glutathione system by sulfated polysaccharides can be the possible reason for the reduction of intracellular reactive oxygen species, prevention of apoptosis, and betterment of viability in L929 cells. The study confirms the potent antioxidant activity of the sulfated polysaccharides in addition to their structural and nutritional roles.


Author(s):  
Lingling Jiang ◽  
Yan Qi ◽  
Xianghan Kong ◽  
Runnan Wang ◽  
Jianfei Qi ◽  
...  

Activin A, a member of the transforming growth factor-beta (TGF-β) superfamily, contributes to tissue healing and fibrosis. As the innate tissue cells, fibroblasts also play an important role in wound healing and fibrosis. Herein, this study was aimed to investigate how activin A exhibited regulatory effects on adhesion and migration of fibroblasts. We found that activin A induced the migration of fibroblast cell line L929 cells in transwell chamber and microfluidic device. Activin A also promoted L929 cells adhesion, but did not affect L929 cells viability or proliferation. In addition, activin A induced α-SMA expression and TGF-β1 release, which were factors closely related to tissue fibrosis, but had no effect on IL-6 production, a pro-inflammatory cytokine. Furthermore, activin A elevated calcium levels in L929 cells and increased p-ERK protein levels. Activin A-induced migration of L929 cells was attenuated by ERK inhibitor FR180204. To conclude, these data indicated that activin A as a novel chemokine induced the chemotactic migration of L929 cells via ERK signaling and possessed the pro-fibrosis role. These findings provide a new insight into understanding of activin A in tissue fibrosis.


Author(s):  
Manal Y. Tayel ◽  
Aida Nazir ◽  
Ibtessam M. Abdelhamid ◽  
Myriam A. S. Helmy ◽  
Nadia E. Zaki ◽  
...  

Abstract Background Chronic inflammation with sustained unregulated immune stimulation in autoimmune rheumatic diseases (ARD) may be a risk factor for developing lymphoproliferative disorders (LPD). Markers of ARD activity as high erythrocyte sedimentation rate or erosive joint diseases and the development of B-symptoms were accounted as risk factors for LPD development. We investigated the association of five inflammatory cytokine genes single nucleotide polymorphisms (SNPs): TNF-α -308G>A; TGF-β1 gene codon 10 T>C and 25 G>C; IL-10 promoter SNPs -1082 A>G, -819T>C, and -592A>C; IL-6 -174G>C; and IFN-γ 874 T>A with the risk of LPD development in ARD patients. The study was conducted on 70 patients divided into group I, 25 ARD patients diagnosed as RA (n = 15) and SLE (n = 10) and with no history of malignancy; group II, 25 patients diagnosed with LPD and had no ARD; and group III, 20 patients diagnosed with both diseases: ARD and LPD. Cytokine genotyping was analyzed by PCR-sequence-specific primer (PCR-SSP). Results ARD+LPD patients had significantly higher frequency of TNF-α -308A allele and AA+AG genotype (high TNF-α producers) and IL-10 -1082A allele and AA genotype (low IL-10 producers) than ARD patients (p = 0.003, p = 0.024, p = 0.003, p = 0.03, respectively) with a significantly increased risk of LPD development in ARD patients expressing the corresponding alleles and genotypes. No significant differences were detected in the distribution frequency of either TGF-β1, IL-6, or IFN-γ SNPs between groups I and III or any of the studied SNPs between groups II and III. The distribution frequency of IL-10 ATA haplotype was significantly increased in group III as compared to group I (p = 0.037). Conclusion The significantly increased frequency of the high-TNF-α- and low-IL-10-producing alleles and genotypes in ARD patients may participate in the provision of a proinflammatory milieu that eventually increases the risk of LPD development.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


2021 ◽  
Vol 22 (6) ◽  
pp. 2952
Author(s):  
Tzu-Yu Hou ◽  
Shi-Bei Wu ◽  
Hui-Chuan Kau ◽  
Chieh-Chih Tsai

Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Lei Han ◽  
Feng Chen

Abstract Background Let-7a-5p is demonstrated to be a tumor inhibitor in nasopharyngeal carcinoma. However, the role of let-7a-5p in chronic rhinosinusitis with nasal polyps (CRSwNP) has not been reported. This study is designed to determine the pattern of expression and role of let-7a-5p in CRSwNP. Methods The expression level of let-7a-5p, TNF-α, IL-1β, and IL-6 in CRSwNP tissues and cells were detected by RT-qPCR. Western blot assay was carried out to measure the protein expression of the Ras-MAPK pathway. Dual luciferase reporter assay and RNA pull-down assay were used to explore the relationship between let-7a-5p and IL-6. Results Let-7a-5p was significantly downregulated in CRSwNP tissues and cells. Moreover, the mRNA expression of TNF-α, IL-1β and IL-6 was increased in CRSwNP tissues, while let-7a-5p mimic inhibited the expression of TNF-α, IL-1β and IL-6. Besides that, let-7a-5p was negatively correlated with TNF-α, IL-1β and IL-6 in CRSwNP tissues. In our study, IL-6 was found to be a target gene of let-7a-5p. Additionally, let-7-5p mimic obviously reduced the protein levels of Ras, p-Raf1, p-MEK1 and p-ERK1/2, while IL-6 overexpression destroyed the inhibitory effect of let-7a-5p on the Ras-MAPK pathway in CRSwNP. Conclusion We demonstrated that let-7a-5p/IL-6 interaction regulated the inflammatory response through the Ras-MAPK pathway in CRSwNP.


2020 ◽  
Vol 21 (22) ◽  
pp. 8826
Author(s):  
Elena Guillén-Gómez ◽  
Irene Silva ◽  
Núria Serra ◽  
Francisco Caballero ◽  
Jesús Leal ◽  
...  

Pretransplant graft inflammation could be involved in the worse prognosis of deceased donor (DD) kidney transplants. A2A adenosine receptor (A2AR) can stimulate anti-inflammatory M2 macrophages, leading to fibrosis if injury and inflammation persist. Pre-implantation biopsies of kidney donors (47 DD and 21 living donors (LD)) were used to analyze expression levels and activated intracellular pathways related to inflammatory and pro-fibrotic processes. A2AR expression and PKA pathway were enhanced in DD kidneys. A2AR gene expression correlated with TGF-β1 and other profibrotic markers, as well as CD163, C/EBPβ, and Col1A1, which are highly expressed in DD kidneys. TNF-α mRNA levels correlated with profibrotic and anti-inflammatory factors such as TGF-β1 and A2AR. Experiments with THP-1 cells point to the involvement of the TNF-α/NF-κB pathway in the up-regulation of A2AR, which induces the M2 phenotype increasing CD163 and TGF-β1 expression. In DD kidneys, the TNF-α/NF-κB pathway could be involved in the increase of A2AR expression, which would activate the PKA–CREB axis, inducing the macrophage M2 phenotype, TGF-β1 production, and ultimately, fibrosis. Thus, in inflamed DD kidneys, an increase in A2AR expression is associated with the onset of fibrosis, which may contribute to graft dysfunction and prognostic differences between DD and LD transplants.


Author(s):  
Jun Zhao ◽  
Le-Xuan Zhang ◽  
Yu-Ting Wang ◽  
Yang Li ◽  
Hong-Lin Chen, MD

Background Diabetic foot (DF) is a dangerous complication of diabetes. The aim of the study was to synthesize all the published single nucleotide polymorphisms (SNPs) of DF to objectively evaluate the relationship of SNPs and DF risks. Methods The HuGE database and CNKI were searched for eligible publications on genetic polymorphisms and the risk of DF systematically. The quality of literatures was evaluated by the Newcastle-Ottawa scale. Pooled odds ratios with a 95% confidence interval for SNPs were evaluated through 3 genetic models. Results Citing 29 different polymorphisms from 24 articles and the study met our selection criteria. There were 24 polymorphisms summarized systematically, and 5 merged polymorphisms for a meta-analysis: 9 positively associated with DF: HIF-1α rs11549465, TNF-α rs1800629, TLR-9 rs5743836, FIB rs6056, HSP70-2437C/T, VDR rs2228570, LOX rs1800449, ITLN1 rs2274907, and OPG rs2073617, but OPG rs3134069 was not a risk factor in DF; 6 negatively associated with DF: VEGF rs833061 and rs2010963, MCP-1 rs1024611, SDF-1 rs1801157, SIRT1 rs12778366, and OPG rs2073617. In addition, 13 polymorphisms were not associated with DF: MMP-9 rs3918242, eNOS rs1799983, VEGF rs3025039, -7C/T, rs1570360, rs13207351, and rs699947, IL-6 rs1800795, HIF-1α rs11549467, TNF-α rs361525, TLR-2 rs3804100, SIRT1 rs3758391, and TIMP-1 rs2070584. Conclusions The study provided some evidence for SNPs to the development of diabetic foot. The meta-analysis showed that rs1024611 of MCP-1 may be regarded as a protective factor, especially in Asian populations. Other loci indicated inconsistent results.


Sign in / Sign up

Export Citation Format

Share Document